Pharmacotherapy effect on genetic diversity of intestinal biocenosis



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Diarrhea is one of the most frequent adverse events of H. pylori eradication therapy due to a violation of the intestinal microflora The aim of the study was to assess intestinal microflora content in H. pylori-positive and H. pylori-negative patients, as well as the effect of eradication therapy on its qualitative and quantitative composition 78 stool samples were used for analysis: 34 samples from H. pylori-positive patients before eradication therapy, 34 - from the same patients after completion of eradication therapy, 10 samples from H. pylori-negative patients (control group) A total deoxyribonucleic acid (DNA) was isolated from the stool samples by phenol extraction method, a nucleotide sequence of the isolated DNA was established by shotgun sequencing method Composition of intestinal microflora community was evaluated based on the number of species, the qualitative composition and diversity Shannon index. Statistical analysis and visualization of the analysis results were carried out in R medium Bacteroides, Prevotella, Eubacterium, Roseburia, Faecalibacterium and Clostridium were predominant genus in all groups of faecal samples, however, representation variability of the prevailing phyls (Bacteroides and Firmicutes) was lower in the control samples than in H. pylori-positive patients before and after eradication therapy Eradication therapy resulted in reduction of the Coprococcus, Bifidobacterium, Collinsella genera representation and increase in the number of Clostridium, Bacteroides, Coprobacillus and Flavonifractor. In about half of the patients eradication therapy leads to a decrease of both the number of species and the Shannon index, which indicates a decrease in the overall diversity and, consequently, reduction of the stability of community, with a possible predominance of individual species. These results suggest that changes in the intestinal microflora composition after H. pylori eradication therapy are individual and caused by initial condition of the intestinal microbiota with a predominance of its particular representatives

Full Text

Restricted Access

About the authors

D. D Safina

Kazan (Volga region) Federal University

S. R Abdulkhakov

Kazan (Volga region) Federal University; Kazan State Medical University

Email: sayarabdul@yandex.ru

T. V Grigoryeva

Kazan (Volga region) Federal University

M. I Markelova

Kazan (Volga region) Federal University

R. K Ismagilova

Kazan (Volga region) Federal University

D. R Khusnutdinova

Kazan (Volga region) Federal University

S. Yu Malanin

Kazan (Volga region) Federal University

A. V Laikov

Kazan (Volga region) Federal University

M. N Siniagina

Kazan (Volga region) Federal University

R. A Abdulkhakov

Kazan State Medical University

V. M Chernov

Kazan (Volga region) Federal University

References

  1. Guarner F. Enteric flora in health and disease. Digestion 2006; 73 (Suppl. 1): 5-12.
  2. Tlaskalová-Hogenová H., Štěpánková R., Kozáková H. et al. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cellular & Molecular Immunology 2011; 8: 110-20.
  3. Fong I.W. The Role of Microbes in Common Non-Infectious Diseases. Publisher: Springer New York. Copyright Holder: Springer Science + Business Media New York. 2014. XlV, 185.
  4. Sherbet G. Bacterial Infections and the Pathogenesis of Autoimmune Conditions. BJMP 2009; 2(1): 6-13.
  5. Sun J., Chang E.B. Exploring gut microbes in human health and disease: Pushing the envelope. Genes & Diseases 2014; 1(2): 132-9.
  6. Jernberg C., Löfmark S., Edlund C. et al. Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology 2010; 156 (Pt 11): 3216-23.
  7. Sullivan A., Edlund C., Nord C.E. Effect of antimicrobial agents on the ecological balance of human microflora. Lancet Infect. Dis. 2001; 1: 101-14.
  8. Malfertheiner P., Megraud F., O'Morain C.A. et al. Management of Helicobacter pylori infection-the Maastricht IV. Florence Consensus Report. Gut. 2012; 61(5): 646-64.
  9. Schulz C., Koch N., Schütte K. et al. H. pylori and its modulation of gastrointestinal microbiota. J. Dig. Dis. 2015; 16(3): 109-17.
  10. Bühling A., Radun D., Müller W.A. et al. Influence of anti-Helicobacter triple-therapy with metronidazole, omeprazole and clarithromycin on intestinal microflora. Aliment. Pharmacol. Ther. 2001; 15(9): 1445-52.
  11. Lou J.G., Chen J., Huang X.L. et al. Changes in the intestinal microflora of children with Helicobacter pylori infection and after Helicobacter pylori eradication therapy. Chin. Med. J. 2007; 120(10): 929-31
  12. Myllyluoma E., Ahlroos T., Veijola L. et al. Effects of anti-Helicobacter pylori treatment and probiotic supplementation on intestinal microbiota. Int. J. Antimicrob. Agents. 2007; 29(1): 66-72.
  13. Yang Y.J., Sheu B.S. Probiotics-containing yogurts suppress Helicobacter pylori load and modify immune response and intestinal microbiota in the Helicobacter pylori-infected children. Helicobacter 2012; 17(4): 297-304.
  14. Adamsson I., Nord C.E. , Lundquist P. et al. Comparative effects of omeprazole, amoxycillin plus metronidazole versus omeprazole, clarithromycin plus metronidazole on oral, gastric and intestinal microflora in Helicobacter pylori-infected patients. J. Antimicrob. Chemother. 1999; 44(5): 629-40.
  15. Tanaka J., Fukuda Y., Shintani S. et al. Influence of antimicrobial treatment for Helicobacter pylori infection on the intestinal microflora in Japanese macaques. J. Med. Microbiol. 2005; 54: 309-14.
  16. Jakobsson H.E., Jernberg C., Andersson A.F. et al. Short-Term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS One 2010; 5(3): e9836.
  17. Jernberg C., Löfmark S., Edlund C. et al. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J. 2007; 1: 56-66;
  18. Zhang B.W., Li M., Ma L. C. et al. A widely applicable protocol for DNA isolation from fecal samples. Biochem. genetics 2006. 44 (11-12): 494-503.
  19. Mitra S., Förster-Fromme K., Damms-Machado A. et al. Analysis of the intestinal microbiota using SOLiD 16S rRNA gene sequencing and SOLiD shotgun sequencing. BMC genomics 2013; 14(Suppl 5): 16.
  20. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012. 486 (7402): 207-14.
  21. Langmead B., Trapnell C., Pop M. et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009. 10(3): R25.
  22. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http:// www. R-project. org/.
  23. Shannon C. E. A mathematical theory of communication. ACM SIGMOBILE Mobile Computing and Communications Review 2001; 5(1): 3-55.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies