Иммунологические аспекты коронавирусной болезни, вызванной SARS-CoV-2

  • Авторы: Абакушина Е.В1
  • Учреждения:
    1. Медицинский радиологический научный центр им. А.Ф. Цыба - филиал «Национального медицинского центра радиологии» Министерства здравоохранения Российской Федерации
  • Выпуск: Том 15, № 3 (2020)
  • Страницы: 14-21
  • Раздел: Статьи
  • Статья получена: 16.01.2023
  • Статья опубликована: 15.09.2020
  • URL: https://genescells.ru/2313-1829/article/view/121956
  • DOI: https://doi.org/10.23868/202011002
  • ID: 121956


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Пандемическая вспышка коронавирусной болезни 2019 (COVID-19) быстро распространяется по всему миру. Уже имеется информация о структуре коронавируса и механизме его инвазии, однако из-за ограниченного понимания иммунных эффектов, вызванных SARS-CoV-2, сохраняется трудность в предотвращении у пациентов развития осложнений коронавирусной инфекции, в частности, острого респираторного дистресс-синдрома (ордс) обусловленного высвобождением цитокинов. В данном обзоре мы обобщили имеющуюся информацию об иммунном ответе на SARS-CoV-2 и описали механизмы ускользания вируса от иммунного надзора. Это может быть полезно при выборе варианта иммунотерапии в качестве комбинированного лечения для предотвращения развития у пациента ОРДс и уменьшения осложнений короновирусный инфекции.

Полный текст

Доступ закрыт

Об авторах

Е. В Абакушина

Медицинский радиологический научный центр им. А.Ф. Цыба - филиал «Национального медицинского центра радиологии» Министерства здравоохранения Российской Федерации

Email: abakushina@mail.ru

Список литературы

  1. Novel Coronavirus (2019-nCoV) Situation Report https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/
  2. Felsenstein S., Herbert J.A., McNamara P.S., Hedrich C.M. COVID-19: Immunology and treatment options. Clin Immunol. 2020; 215: 108448. doi: 10.1016/j.clim.2020.108448.
  3. Channappanavar R., Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin. Immunopathol. 2017; 39529-39.
  4. Drexler J.F., Gloza-Rausch F., Glende J. et al. Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of corona viruses based on partial RNA-dependent RNA polymerase gene sequences. J. Virol. 2010; 84(21): 11336-49.
  5. Song Z., Xu Y., Bao L. et al. From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses 2019; 11(1): 59. doi:10.3390/ v11010059.
  6. Fehr A.R., Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Met. Mol. Вю1. 2015; 1282: 1-23.
  7. Wang Y.-T., Landeras Bueno S., Hsieh L.-E. et al. Spiking Pandemic Potential: Structural and Immunological aspects of SARS-CoV2. Trends in Microbiol. 2020; 28(8): 605-618. https://doi.org/10.1016/j. tim.2020.05.012.
  8. Tai W., He L., Zhang X. et al. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell Mol. Immunol. 2020; 17: 613-620. doi: 10.1038/s41423-020-0400-4.
  9. Ou X., Liu Y., Lei X. et al. Characterization of spike glycoprotein of SARS-CoV2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat. Commun. 2020; 11(1): 1620.
  10. Prompetchara E., Ketloy C., Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac. J. Allergy Immunol. 2020; 38(1): 1-9.
  11. Muus C., Luecken M. D., Eraslan G. et al. Integrated analyses of single-cell at lases reveal age, gender, and smoking status associations with cell type-specific expression of mediators of SARS-CoV2 viral entry and high lights inflammatory programs in putative target cells. bioRxiv2020.04.19.049254; doi:https://doi.org/10.1101/2020.04.19.049254.
  12. Sevajol M., Subissi L., Decroly E. et al. Insights into RNA synthesis, capping, and proof reading mechanisms of SARS-coronavirus. Virus Res. 2014; 194: 90-9.
  13. Xu H., Zhong L., Deng J. et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int. J. Oral. Sci. 2020; 12(1): 8.
  14. Zhang W., Zhao Y., Zhang F., et al. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The Perspectives of clinical immunologists from China. Clin. Immunol. 2020; 214: 108393.
  15. Iwasaki A., Medzhitov R. Regulation of adaptive immunity by the innate immune system. Science 2010; 327(5963): 291-5. doi: 10.1126/ science.1183021.
  16. Yi Y., Lagniton P.N.P., Ye S. et al. COVID-19: what has been learned and to be learned about the novel coronavirus disease. Int. J. Вю1. Sci. 2020; 16(10): 1753-66. https://doi.org/10.7150/ijbs.45134.
  17. Lazear H.M., Schoggins J.W., Diamond M.S. Shared and distinct functions of type I. and type III interferons. Immunity. 2019; 50(4): 907-23.
  18. Blanco-Melo D., Nilsson-Payant ВE., Liu W.-C. et al., Imbalanced Host Response to SARS-CoV2 Drives Development of COVID-19. Cell 2020; 181: 1036-45. https://doi.org/10.1016/j.cell.2020.04.026.
  19. de Wit E., van Doremalen N., Falzarano D., Munster V.J. SARS and MERS: recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 2016; 14(8): 523-34.
  20. Alunno A., Padjen I., Fanouriakis A., Boumpas D.T. Pathogenic and therapeutic relevance of JAK/STAT signaling in systemic lupus erythematosus: integration of distinct inflammatory pathways and the prospect of their inhibition with an oral agent. Cells 2019; 8(8): 898. doi: 10,3390/ cell8080898.
  21. Grifoni A., Weiskopf D., Ramirez S.I. et al. Targets of T. cell responses to SARS-CoV2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell 2020; 181(7): 1489-501. https://doi.org/10.1016/j. cell.2020.05.015.
  22. Hamada H., Bassity E., Flies A. et al. Multiple redundant effector mechanisms of CD8+T cells protect against influenza infection. J. Immunol. 2013: 190(1): 296-306. doi: 10.4049/jimmunol.1200571.
  23. Zhou Y.G., Fu B.Q., Zheng X.H. et al. Aberrant pathogenic GM-CSF+Tcells and inflammatory CD14+CD16+monocytes insevere pulmonary syndrome patients ofanew coronavirus. bioRxiv 20.02.2020[Preprint]. https://www.biorxiv.org/content/10.1101/2020.02.12.945576v1. doi: 10.1101/2020.02.12.945576
  24. Lee C.Y-P., Lin R.T. P., Renia L., Ng L.F.P. Serological approaches for COVID-19: epidemiologic perspective on surveillance and control. Front. Immunol., 2020; 11: 879. DOI=10.3389/fimmu.2020.00879.
  25. Li Z., Yi Y., Luo X. et al. Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV2 infection diagnosis. J. Med. Virol. 2020; 92: 1518-24. doi: 10.1002/jmv.25727.
  26. Liu W.J., Zhao M., Liu K., et al. T-cell immunity of SARS-CoV: Implications for vaccine development against MERS-CoV. Antiviral Res. 2017; 137: 82-92.
  27. Niu P., Zhang S., Zhou P. et al. Ultrapotent human neutralizing antibody repertoires against middle east respiratory syndrome coronavirus from a recovered patient. J. Infect. Dis. 2018; 218: 1249-60.
  28. Long Q.X., Deng H.J., Chen J. et al. Antibody responses to SARS-CoV2 in COVID-19 patients: the perspective application of serological tests in clinical practice. medRxiv [Preprint] 20.03.2020. doi: 10.1101/2020.03.18.20038018.
  29. Zhang В., Zhou X., Zhu C. et al. Immune phenotyping based on neutrophil-to-lymphocyte ratio and IgG predicts disease severity and outcome for patients with COVID-19. medRxiv [Preprint] 16.03.2020. doi: 10.1101/2020.03.12.20035048.
  30. Xiao D.A.T., Gao D.C., Zhang D.S. Profile of specific antibodies to SARS-CoV2: the first report. J. Infect. 2020; 81(1): 147-78. doi: 10.1016/j.jinf.2020.03.012.
  31. Chan P.K.S., Ng K-C., Chan R.C.W. et al. Immunofluorescence assay for serologic diagnosis of SARS. Emerging Infect Dis. 2004; 10: 530-2. doi: 10.3201/eid1003.030493.
  32. Lee C.Y., Lin R.T.P., Renia L., et al. Serological approaches for COVID-19: epidemiologic perspective on surveillance and control. Front. Immunol. 2020; 11: 879. https://doi.org/10.3389/fimmu.2020.00879.
  33. Fu Y., Cheng Y., Wu Y. Understanding SARS-CoV2-mediated Inflammatory responses: from mechanisms to potential therapeutic tools. Virol. Sin. 2020; 35: 266-71. doi: 10.1007/s12250-020-00207-4.
  34. Jin Y., Yang H., Ji W., et al. Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses 2020; 12(4): E372. doi: 10.3390/ v12040372.
  35. Xu Z., Shi L., Wang Y. et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020; 8(4): 420-2.
  36. Schnabel A., Hedrich C.M. Childhood vasculitis. Front. Pediatr. 2018; 6: 421.
  37. Mathern D.R., Heeger P.S. Molecules great and small: the complement system. Clin. J.Am. Soc. Nephrol. 2015; 10: 1636-50.
  38. Braciale T.J., Sun J., Kim T.S. Regulating the adaptive immune response to respiratory virus infection. Nat. Rev. Immunol. 2012; 12(4): 295-305. doi: 10.1038/nri3166.
  39. Huang A.T., Garcia-Carreras В., Hitchings M.D.T. et al. A systematic review of antibody mediated immunity to coronaviruses: antibody kinetics, correlates of protection, and association of antibody responses with severity of disease. medRxiv [Preprint] 17.04.20. doi: https://doi.org/10.1101/2 020.04.14.20065771.t.
  40. Cao W.-C., Liu W., Zhang P.-H. et al. Disappearance of antibodies to SARS-associated coronavirus after recovery. N. Engl. J. Med. 2007; 357: 1162- 63.
  41. Channappanavar R., Fett C., Zhao J., Meyerholz D.K., Perlman S. Virus-specific memory CD8 T. cells provide substantial protection from lethal severe acute respiratory syndrome coronavirus infection. J. Virol. 2014; 88(19): 11034-44. doi: 10.1128/JVI.01505-14.
  42. Janice Oh H.L., Ken-En Gan S., Bertoletti A., Tan Y.J. Understanding the T. cell immune response in SARS coronavirus infection. Emerg. Microbes. Infect. 2012; 1(9): e23. doi: 10.1038/emi.2012.26.
  43. Vabret N., Britton, G.J., Gruber C., etal. The Sinai Immunology Review Project, Immunology of COVID-19: current state ofthe science, Immunity. 2020; 52(6): 910-41. doi: https://doi.org/10.1016/ j.immuni.2020.05.002.
  44. Kindler E., Thiel V., Weber F. Interaction of SARS and MERS coronaviruses with the antiviral interferon response. Adv. Virus Res. 2016; 96: 219-43.
  45. Bo D., Chenhui W., Yingjun T. et al. Reduction and functional exhaustion of T. cells in patients with coronavirus disease 2019 (COVID-19). Front. Immunol. 2020; 11: 827. DOI=10.3389/fimmu.2020.00827.
  46. Gupta S., Bi R., Kim C. et al. Role of NF-kappa В. signaling pathway in increased tumor necrosis factor-alpha-induced apoptosis of lymphocytes in aged humans. Cell Death Differ. 2005; 12: 177-83. doi: 10.1038/ sj.cdd.4401557.
  47. Zhang Y., Zhang J., Chen Y. et al. The ORF8 protein of SARS-CoV2 mediates immune evasion through potently downregulating MHC-I. bioRxiv [Preprint] 24.05.2020. doi: 10.1101/2020.05.24.111823.
  48. Lu X., Pan J., Tao J., Guo D. SARS-CoV nucleocapsid protein antagonizes IFN-beta response by targeting initial step of IFN-beta induction pathway, and its C-terminal region is critical for the antagonism. Virus Genes 2011; 42: 37-45.
  49. Atkin-Smith G.K., Duan M., Chen W., Poon I.K.H. The induction and consequences of Influenza A virus-induced cell death. Cell Death Dis. 2018; 9(10): 1002.
  50. Shimabukuro-Vornhagen A., Godel P., Subklewe M., et al. Cytokine release syndrome. J. Immunother. Cancer 2018; 6(1): 56. doi: 10.1186/ s40425-018-0343-9.
  51. Tisoncik J.R., Korth M.J., Simmons C.P., et al. Into the eye of the cytokine storm. Microbiol. Mol. Вю1. Rev. 2012; 76: 16-32. https://doi. org/10.1128/MMBR.05015-11.
  52. Huang C., Wang Y., Li X., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395: 497-506.
  53. Zhou F., Yu T., Du R. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395(10229): 1054-62. doi: 10.1016/ s0140-6736(20)30566-3.
  54. Ruan Q., Yang K., Wang W. et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020; 46(5): 846-8. doi: 10.1007/ s00134-020-05991-x.
  55. Chen N., Zhou M., Dong X. et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020; 395: 507-13.
  56. Barnes B.J., Adrover J.M., Baxter-Stoltzfus A. etal. Targeting poten-tial drivers ofCOVID-19: neutrophil extracellular traps. J. Exp. Med. 2020; 217(6): e20200652. doi: 10.1084/jem.20200652.
  57. Qin C., Zhou L., Hu Z. et al. Dysregulation of immune response in patients with COVID-19 in Wuhan. China. Clin Infect Dis. 2020; 71(15): 762-8. doi: 10.1093/cid/ciaa248.pii: ciaa248.
  58. Wan S.X., Yi Q.J., Fan SB. et al. Characteristics of lymphocyte subsets and cytokines in peripheral blood of 123 hospitalized patients with 2019 novel coronavirus pneumonia. medRxiv [Preprint] 12.02.2020. DOI:1 0.1101/2020.02.10.20021832.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Эко-Вектор, 2020



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах