Immunological aspects of coronavirus disease caused by SARS-CoV-2



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The pandemic outbreak of coronavirus disease 2019 (COVID-19) is rapidly spreading all over the world. Although some progress has been made in understanding the viral structure and invasion mechanism of coronaviruses that may cause severe syndrome, due to the limited understanding of the immune effects caused by SARS-CoV-2, it is difficult for us to prevent patients from developing the acute respiratory distress syndrome (ARDS) and syndrome of cytokines storm, the major complications of coronavirus infection. In this review, we summarized immune responses to SARS-CoV-2 and described some mechanism of evasion from immune system. This may provide clue of using immune therapy as combine treatment to prevent the patient develop into ARDS and largely reduced complications.

Full Text

Restricted Access

About the authors

E. V Abakushina

Tsyb Medical Radiological Research Center - branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation

Email: abakushina@mail.ru

References

  1. Novel Coronavirus (2019-nCoV) Situation Report https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/
  2. Felsenstein S., Herbert J.A., McNamara P.S., Hedrich C.M. COVID-19: Immunology and treatment options. Clin Immunol. 2020; 215: 108448. doi: 10.1016/j.clim.2020.108448.
  3. Channappanavar R., Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin. Immunopathol. 2017; 39529-39.
  4. Drexler J.F., Gloza-Rausch F., Glende J. et al. Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of corona viruses based on partial RNA-dependent RNA polymerase gene sequences. J. Virol. 2010; 84(21): 11336-49.
  5. Song Z., Xu Y., Bao L. et al. From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses 2019; 11(1): 59. doi:10.3390/ v11010059.
  6. Fehr A.R., Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Met. Mol. Вю1. 2015; 1282: 1-23.
  7. Wang Y.-T., Landeras Bueno S., Hsieh L.-E. et al. Spiking Pandemic Potential: Structural and Immunological aspects of SARS-CoV2. Trends in Microbiol. 2020; 28(8): 605-618. https://doi.org/10.1016/j. tim.2020.05.012.
  8. Tai W., He L., Zhang X. et al. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell Mol. Immunol. 2020; 17: 613-620. doi: 10.1038/s41423-020-0400-4.
  9. Ou X., Liu Y., Lei X. et al. Characterization of spike glycoprotein of SARS-CoV2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat. Commun. 2020; 11(1): 1620.
  10. Prompetchara E., Ketloy C., Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac. J. Allergy Immunol. 2020; 38(1): 1-9.
  11. Muus C., Luecken M. D., Eraslan G. et al. Integrated analyses of single-cell at lases reveal age, gender, and smoking status associations with cell type-specific expression of mediators of SARS-CoV2 viral entry and high lights inflammatory programs in putative target cells. bioRxiv2020.04.19.049254; doi:https://doi.org/10.1101/2020.04.19.049254.
  12. Sevajol M., Subissi L., Decroly E. et al. Insights into RNA synthesis, capping, and proof reading mechanisms of SARS-coronavirus. Virus Res. 2014; 194: 90-9.
  13. Xu H., Zhong L., Deng J. et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int. J. Oral. Sci. 2020; 12(1): 8.
  14. Zhang W., Zhao Y., Zhang F., et al. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The Perspectives of clinical immunologists from China. Clin. Immunol. 2020; 214: 108393.
  15. Iwasaki A., Medzhitov R. Regulation of adaptive immunity by the innate immune system. Science 2010; 327(5963): 291-5. doi: 10.1126/ science.1183021.
  16. Yi Y., Lagniton P.N.P., Ye S. et al. COVID-19: what has been learned and to be learned about the novel coronavirus disease. Int. J. Вю1. Sci. 2020; 16(10): 1753-66. https://doi.org/10.7150/ijbs.45134.
  17. Lazear H.M., Schoggins J.W., Diamond M.S. Shared and distinct functions of type I. and type III interferons. Immunity. 2019; 50(4): 907-23.
  18. Blanco-Melo D., Nilsson-Payant ВE., Liu W.-C. et al., Imbalanced Host Response to SARS-CoV2 Drives Development of COVID-19. Cell 2020; 181: 1036-45. https://doi.org/10.1016/j.cell.2020.04.026.
  19. de Wit E., van Doremalen N., Falzarano D., Munster V.J. SARS and MERS: recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 2016; 14(8): 523-34.
  20. Alunno A., Padjen I., Fanouriakis A., Boumpas D.T. Pathogenic and therapeutic relevance of JAK/STAT signaling in systemic lupus erythematosus: integration of distinct inflammatory pathways and the prospect of their inhibition with an oral agent. Cells 2019; 8(8): 898. doi: 10,3390/ cell8080898.
  21. Grifoni A., Weiskopf D., Ramirez S.I. et al. Targets of T. cell responses to SARS-CoV2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell 2020; 181(7): 1489-501. https://doi.org/10.1016/j. cell.2020.05.015.
  22. Hamada H., Bassity E., Flies A. et al. Multiple redundant effector mechanisms of CD8+T cells protect against influenza infection. J. Immunol. 2013: 190(1): 296-306. doi: 10.4049/jimmunol.1200571.
  23. Zhou Y.G., Fu B.Q., Zheng X.H. et al. Aberrant pathogenic GM-CSF+Tcells and inflammatory CD14+CD16+monocytes insevere pulmonary syndrome patients ofanew coronavirus. bioRxiv 20.02.2020[Preprint]. https://www.biorxiv.org/content/10.1101/2020.02.12.945576v1. doi: 10.1101/2020.02.12.945576
  24. Lee C.Y-P., Lin R.T. P., Renia L., Ng L.F.P. Serological approaches for COVID-19: epidemiologic perspective on surveillance and control. Front. Immunol., 2020; 11: 879. DOI=10.3389/fimmu.2020.00879.
  25. Li Z., Yi Y., Luo X. et al. Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV2 infection diagnosis. J. Med. Virol. 2020; 92: 1518-24. doi: 10.1002/jmv.25727.
  26. Liu W.J., Zhao M., Liu K., et al. T-cell immunity of SARS-CoV: Implications for vaccine development against MERS-CoV. Antiviral Res. 2017; 137: 82-92.
  27. Niu P., Zhang S., Zhou P. et al. Ultrapotent human neutralizing antibody repertoires against middle east respiratory syndrome coronavirus from a recovered patient. J. Infect. Dis. 2018; 218: 1249-60.
  28. Long Q.X., Deng H.J., Chen J. et al. Antibody responses to SARS-CoV2 in COVID-19 patients: the perspective application of serological tests in clinical practice. medRxiv [Preprint] 20.03.2020. doi: 10.1101/2020.03.18.20038018.
  29. Zhang В., Zhou X., Zhu C. et al. Immune phenotyping based on neutrophil-to-lymphocyte ratio and IgG predicts disease severity and outcome for patients with COVID-19. medRxiv [Preprint] 16.03.2020. doi: 10.1101/2020.03.12.20035048.
  30. Xiao D.A.T., Gao D.C., Zhang D.S. Profile of specific antibodies to SARS-CoV2: the first report. J. Infect. 2020; 81(1): 147-78. doi: 10.1016/j.jinf.2020.03.012.
  31. Chan P.K.S., Ng K-C., Chan R.C.W. et al. Immunofluorescence assay for serologic diagnosis of SARS. Emerging Infect Dis. 2004; 10: 530-2. doi: 10.3201/eid1003.030493.
  32. Lee C.Y., Lin R.T.P., Renia L., et al. Serological approaches for COVID-19: epidemiologic perspective on surveillance and control. Front. Immunol. 2020; 11: 879. https://doi.org/10.3389/fimmu.2020.00879.
  33. Fu Y., Cheng Y., Wu Y. Understanding SARS-CoV2-mediated Inflammatory responses: from mechanisms to potential therapeutic tools. Virol. Sin. 2020; 35: 266-71. doi: 10.1007/s12250-020-00207-4.
  34. Jin Y., Yang H., Ji W., et al. Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses 2020; 12(4): E372. doi: 10.3390/ v12040372.
  35. Xu Z., Shi L., Wang Y. et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020; 8(4): 420-2.
  36. Schnabel A., Hedrich C.M. Childhood vasculitis. Front. Pediatr. 2018; 6: 421.
  37. Mathern D.R., Heeger P.S. Molecules great and small: the complement system. Clin. J.Am. Soc. Nephrol. 2015; 10: 1636-50.
  38. Braciale T.J., Sun J., Kim T.S. Regulating the adaptive immune response to respiratory virus infection. Nat. Rev. Immunol. 2012; 12(4): 295-305. doi: 10.1038/nri3166.
  39. Huang A.T., Garcia-Carreras В., Hitchings M.D.T. et al. A systematic review of antibody mediated immunity to coronaviruses: antibody kinetics, correlates of protection, and association of antibody responses with severity of disease. medRxiv [Preprint] 17.04.20. doi: https://doi.org/10.1101/2 020.04.14.20065771.t.
  40. Cao W.-C., Liu W., Zhang P.-H. et al. Disappearance of antibodies to SARS-associated coronavirus after recovery. N. Engl. J. Med. 2007; 357: 1162- 63.
  41. Channappanavar R., Fett C., Zhao J., Meyerholz D.K., Perlman S. Virus-specific memory CD8 T. cells provide substantial protection from lethal severe acute respiratory syndrome coronavirus infection. J. Virol. 2014; 88(19): 11034-44. doi: 10.1128/JVI.01505-14.
  42. Janice Oh H.L., Ken-En Gan S., Bertoletti A., Tan Y.J. Understanding the T. cell immune response in SARS coronavirus infection. Emerg. Microbes. Infect. 2012; 1(9): e23. doi: 10.1038/emi.2012.26.
  43. Vabret N., Britton, G.J., Gruber C., etal. The Sinai Immunology Review Project, Immunology of COVID-19: current state ofthe science, Immunity. 2020; 52(6): 910-41. doi: https://doi.org/10.1016/ j.immuni.2020.05.002.
  44. Kindler E., Thiel V., Weber F. Interaction of SARS and MERS coronaviruses with the antiviral interferon response. Adv. Virus Res. 2016; 96: 219-43.
  45. Bo D., Chenhui W., Yingjun T. et al. Reduction and functional exhaustion of T. cells in patients with coronavirus disease 2019 (COVID-19). Front. Immunol. 2020; 11: 827. DOI=10.3389/fimmu.2020.00827.
  46. Gupta S., Bi R., Kim C. et al. Role of NF-kappa В. signaling pathway in increased tumor necrosis factor-alpha-induced apoptosis of lymphocytes in aged humans. Cell Death Differ. 2005; 12: 177-83. doi: 10.1038/ sj.cdd.4401557.
  47. Zhang Y., Zhang J., Chen Y. et al. The ORF8 protein of SARS-CoV2 mediates immune evasion through potently downregulating MHC-I. bioRxiv [Preprint] 24.05.2020. doi: 10.1101/2020.05.24.111823.
  48. Lu X., Pan J., Tao J., Guo D. SARS-CoV nucleocapsid protein antagonizes IFN-beta response by targeting initial step of IFN-beta induction pathway, and its C-terminal region is critical for the antagonism. Virus Genes 2011; 42: 37-45.
  49. Atkin-Smith G.K., Duan M., Chen W., Poon I.K.H. The induction and consequences of Influenza A virus-induced cell death. Cell Death Dis. 2018; 9(10): 1002.
  50. Shimabukuro-Vornhagen A., Godel P., Subklewe M., et al. Cytokine release syndrome. J. Immunother. Cancer 2018; 6(1): 56. doi: 10.1186/ s40425-018-0343-9.
  51. Tisoncik J.R., Korth M.J., Simmons C.P., et al. Into the eye of the cytokine storm. Microbiol. Mol. Вю1. Rev. 2012; 76: 16-32. https://doi. org/10.1128/MMBR.05015-11.
  52. Huang C., Wang Y., Li X., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395: 497-506.
  53. Zhou F., Yu T., Du R. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395(10229): 1054-62. doi: 10.1016/ s0140-6736(20)30566-3.
  54. Ruan Q., Yang K., Wang W. et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020; 46(5): 846-8. doi: 10.1007/ s00134-020-05991-x.
  55. Chen N., Zhou M., Dong X. et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020; 395: 507-13.
  56. Barnes B.J., Adrover J.M., Baxter-Stoltzfus A. etal. Targeting poten-tial drivers ofCOVID-19: neutrophil extracellular traps. J. Exp. Med. 2020; 217(6): e20200652. doi: 10.1084/jem.20200652.
  57. Qin C., Zhou L., Hu Z. et al. Dysregulation of immune response in patients with COVID-19 in Wuhan. China. Clin Infect Dis. 2020; 71(15): 762-8. doi: 10.1093/cid/ciaa248.pii: ciaa248.
  58. Wan S.X., Yi Q.J., Fan SB. et al. Characteristics of lymphocyte subsets and cytokines in peripheral blood of 123 hospitalized patients with 2019 novel coronavirus pneumonia. medRxiv [Preprint] 12.02.2020. DOI:1 0.1101/2020.02.10.20021832.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies