Доклинические исследования терапиибокового амиотрофического склероза с помощьюгенетически модифицированных мононуклеарныхклеток крови пуповины

Обложка


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Развитие фундаментальной и клинической «регенера-
тивной медицины» основывается на прогрессе генных и
клеточных биотехнологий. Вместе с тем обнадёживающие
доклинические исследования на животных и ведущиеся
клинические испытания значительно отстают от доступ-
ных на сегодняшний день новых генных, клеточных и
генно-клеточных подходов. Нейронаука является одной
из быстро развивающихся областей знаний в биологии и
медицине и поэтому пионерские исследования в генно-
клеточной терапии нейродегенеративных заболеваний
в эксперименте обещают прорыв в клинической «реге-
неративной медицине» в ближайшем будущем. В об-
зоре представлены стратегии генно-клеточной терапии
нейродегенеративных заболеваний на примере бокового
амиотрофического склероза. Особое внимание уделяет-
ся собственным оригинальным исследованиям по при-
менению генно-клеточных конструкций на основе моно-
нуклеарных клеток пуповинной крови и двухкассетных
плазмидных векторов для нейропротекции у трансгенных
мышей SOD1-G93A с фенотипом бокового амиотрофиче-
ского склероза. На основании полученных результатов по
ксенотрансплантации мононуклеарных клеток пуповинной
крови, сверхэкспрессирующих рекомбинантные нейраль-
ную молекулы адгезии L1, сосудистый эндотелиальный
фактор роста, фактор роста фибробластов 2 и глиальный
нейротрофический фактор в разных комбинациях, обо-
сновывается эффективность применения генетически
модифицированных клеток крови пуповины для лечения
нейродегенеративных заболеваний. Рассмотрены целесо-
образность генетической модификации клеток пуповинной
крови не только с позиции доставки терапевтических мо-
лекул к нервным клеткам, но и с точки зрения увеличения
выживаемости клеток после трансплантации, адресной
миграции в места нейродегенрации и возможной диффе-
ренцировки в эндотелиальные клетки, а также в клетки
макро- и микроглии.

Об авторах

А А Ризванов

Казанский (Приволжский) федеральный университет, КазаньКазанский государственный медицинский университет, КазаньБанк стволовых клеток Казанского государственного медицинского университета, КазаньРеспубликанская клиническая больница МЗ РТ, Казань

Казанский (Приволжский) федеральный университет, КазаньКазанский государственный медицинский университет, КазаньБанк стволовых клеток Казанского государственного медицинского университета, КазаньРеспубликанская клиническая больница МЗ РТ, Казань

Д С Гусева,

Казанский (Приволжский) федеральный университет, КазаньКазанский государственный медицинский университет, КазаньБанк стволовых клеток Казанского государственного медицинского университета, КазаньРеспубликанская клиническая больница МЗ РТ, Казань

Казанский (Приволжский) федеральный университет, КазаньКазанский государственный медицинский университет, КазаньБанк стволовых клеток Казанского государственного медицинского университета, КазаньРеспубликанская клиническая больница МЗ РТ, Казань

И И Салафутдинов

Казанский (Приволжский) федеральный университет, КазаньКазанский государственный медицинский университет, КазаньБанк стволовых клеток Казанского государственного медицинского университета, КазаньРеспубликанская клиническая больница МЗ РТ, Казань

Казанский (Приволжский) федеральный университет, КазаньКазанский государственный медицинский университет, КазаньБанк стволовых клеток Казанского государственного медицинского университета, КазаньРеспубликанская клиническая больница МЗ РТ, Казань

Ф В Баширов,

Казанский (Приволжский) федеральный университет, КазаньКазанский государственный медицинский университет, КазаньБанк стволовых клеток Казанского государственного медицинского университета, КазаньРеспубликанская клиническая больница МЗ РТ, Казань

Казанский (Приволжский) федеральный университет, КазаньКазанский государственный медицинский университет, КазаньБанк стволовых клеток Казанского государственного медицинского университета, КазаньРеспубликанская клиническая больница МЗ РТ, Казань

А П Киясов,

Казанский (Приволжский) федеральный университет, КазаньКазанский государственный медицинский университет, КазаньБанк стволовых клеток Казанского государственного медицинского университета, КазаньРеспубликанская клиническая больница МЗ РТ, Казань

Казанский (Приволжский) федеральный университет, КазаньКазанский государственный медицинский университет, КазаньБанк стволовых клеток Казанского государственного медицинского университета, КазаньРеспубликанская клиническая больница МЗ РТ, Казань

Р Р Исламов

Казанский (Приволжский) федеральный университет, КазаньКазанский государственный медицинский университет, КазаньБанк стволовых клеток Казанского государственного медицинского университета, КазаньРеспубликанская клиническая больница МЗ РТ, Казань

Казанский (Приволжский) федеральный университет, КазаньКазанский государственный медицинский университет, КазаньБанк стволовых клеток Казанского государственного медицинского университета, КазаньРеспубликанская клиническая больница МЗ РТ, Казань

Список литературы

  1. Anderson W.F. September 14, 1990: the beginning. Hum. Gene Ther. 1990; 1(4): 371-2.
  2. Lunn J.S., Hefferan M.P., Marsala M. et al. Stem cells: comprehensive treatments for amyotrophic lateral sclerosis in conjunction with growth factor delivery. Growth Factors 2009; 27(3): 133-40.
  3. Hester M.E., Foust K.D., Kaspar R.W. et al. AAV as a gene transfer vector for the treatment of neurological disorders: novel treatment thoughts for ALS. Curr. Gene Ther. 2009; 9(5): 428-33.
  4. Cartier N., Hacein-Bey-Abina S., Bartholomae C.C. et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 2009; 326(5954): 818-23.
  5. Gluckman E. Current status of umbilical cord blood hematopoietic stem cell transplantation. Exp. Hematol. 2000; 28(11): 1197-205. 6. Gluckman E., Locatelli F. Umbilical cord blood transplants. Curr. Opin. Hematol. 2000; 7(6): 353-7.
  6. Laughlin M.J. Umbilical cord blood for allogeneic transplantation in children and adults. Bone Marrow Transplant. 2001; 27(1): 1-6.
  7. Ballen K., Broxmeyer H.E., McCullough J. et al. Current status of cord blood banking and transplantation in the United States and Europe. Biol. Blood Marrow Transplant. 2001; 7(12): 635-45.
  8. Chen J., Sanberg P.R., Li Y. et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. J. Сerebr. Circulat. 2001; 32(11): 2682-8.
  9. Yang W.Z., Zhang Y., Wu F. et al. Safety evaluation of allogeneic umbilical cord blood mononuclear cell therapy for degenerative conditions. J. Transl Med. 2010; 8:75.
  10. Исламов Р.Р., Ризванов А.А., Гусева Д.С. и др. Генная и клеточная терапия нейродегенеративных заболеваний. Клеточная Трансплантология и Тканевая Инженерия 2007; 2(3): 21-37. 12. Ikeda Y., Fukuda N., Wada M. et al. Development of angiogenic
  11. Ikeda Y., Fukuda N., Wada M. et al. Development of angiogenic cell and gene therapy by transplantation of umbilical cord blood with vascular endothelial growth factor gene. Hypertens Res. 2004; 27(2): 119-28.
  12. Chen H.K., Hung H.F., Shyu K.G. et al. Combined cord blood stem cells and gene therapy enhances angiogenesis and improves cardiac performance in mouse after acute myocardial infarction. Eur. J. Clin. Invest. 2005; 35(11): 677-86.
  13. Al Sabti H. Therapeutic angiogenesis in cardiovascular disease. J. Cardiothorac. Surg. 2007; 2:49.
  14. Kano M.R., Morishita Y., Iwata C. et al. VEGF-A and FGF-2 synergistically promote neoangiogenesis through enhancement of endogenous PDGF-B-PDGFRbeta signaling. J Cell Sci. 2005; 118(16): 3759-68.
  15. http://clinicaltrials.gov/ct2/show/NCT00620217
  16. Miao H.Q., Soker S., Feiner L. et al. Neuropilin-1 mediates collapsin-1/semaphorin III inhibition of endothelial cell motility: functional competition of collapsin-1 and vascular endothelial growth factor-165. J Cell Biol. 1999; 146(1): 233-42.
  17. Jin K., Zhu Y., Sun Y. et al. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. PNAS USA 2002; 99(18): 11946-50.
  18. Matsuzaki H., Tamatani M., Yamaguchi A. et al. Vascular endothelial growth factor rescues hippocampal neurons from glutamate-induced toxicity: signal transduction cascades. Faseb 2001; 15(7): 1218-20.
  19. Klinge C.M. Estrogen receptor interaction with estrogen response elements. Nucleic Acids Res. 2001; 29(14): 2905-19.
  20. Lambrechts D., Storkebaum E., Morimoto M. et al. VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death. Nat. Genet. 2003; 34(4): 383-94.
  21. Oosthuyse B., Moons L., Storkebaum E. et al. Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat Genet. 2001; 28(2): 131-8.
  22. Murakami T., Ilieva H., Shiote M. et al. Hypoxic induction of vascular endothelial growth factor is selectively impaired in mice carrying the mutant SOD1 gene. Brain Res. 2003; 989(2): 231-7.
  23. Li B., Xu W., Luo C. et al. VEGF-induced activation of the PI3-K/ Akt pathway reduces mutant SOD1-mediated motor neuron cell death. Brain Res. Mol. Brain Res. 2003; 111(1-2): 155-64.
  24. Islamov R.R., Chintalgattu V., Pak E.S. et al. Induction of VEGF and its Flt-1 receptor after sciatic nerve crush injury. Neuroreport. 2004; 15(13): 2117-21.
  25. Weiss S., Dunne C., Hewson J. et al. Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J Neurosci. 1996; 16(23): 7599-609.
  26. Johansson C.B., Momma S., Clarke D.L. et al. Identification of a neural stem cell in the adult mammalian central nervous system. Cell 1999; 96(1): 25-34.
  27. Kojima A., Tator C.H. Intrathecal administration of epidermal growth factor and fibroblast growth factor 2 promotes ependymal proliferation and functional recovery after spinal cord injury in adult rats. J. Neurotrauma 2002; 19(2): 223-38.
  28. Martens D.J., Seaberg R.M., van der Kooy D. In vivo infusions of exogenous growth factors into the fourth ventricle of the adult mouse brain increase the proliferation of neural progenitors around the fourth ventricle and the central canal of the spinal cord. Eur. J. Neurosci. 2002; 16(6): 1045-57.
  29. Dromard C., Bartolami S., Deleyrolle L. et al. NG2 and Olig2 expression provides evidence for phenotypic deregulation of cultured central nervous system and peripheral nervous system neural precursor cells. Stem Cells 2007; 25(2): 340-53.
  30. Vergano-Vera E., Mendez-Gomez H.R., Hurtado-Chong A. et al. Fibroblast growth factor-2 increases the expression of neurogenic genes and promotes the migration and differentiation of neurons derived from transplanted neural stem/progenitor cells. Neuroscience 2009; 162(1): 39-54.
  31. Mudo G., Bonomo A., Di Liberto V. et al. The FGF-2/FGFRs neurotrophic system promotes neurogenesis in the adult brain. J. Neural. Transm. 2009; 116(8): 995-1005.
  32. Bruckner K., Pasquale E.B., Klein R. Tyrosine phosphorylation of transmembrane ligands for Eph receptors. Science 1997; 275(5306): 1640-3.
  33. Chong L.D., Park E.K., Latimer E. et al. Fibroblast growth factor receptor-mediated rescue of x-ephrin B1-induced cell dissociation in Xenopus embryos. Mol. Cell Biol. 2000; 20(2): 724-34.
  34. Naruse M., Nakahira E., Miyata T. et al. Induction of oligodendrocyte progenitors in dorsal forebrain by intraventricular microinjection of FGF-2. Dev Biol. 2006; 297(1): 262-73.
  35. Lin G., Goldman J.E. An FGF-responsive astrocyte precursor isolated from the neonatal forebrain. Glia. 2009; 57(6): 592-603.
  36. Hu B.Y., Du Z.W., Zhang S.C. Differentiation of human oligodendrocytes from pluripotent stem cells. Nat. Protoc. 2009; 4(11): 1614-22.
  37. Gurney M.E., Pu H., Chiu A.Y. et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 1994; 264(5166): 1772-5.
  38. Ризванов А.А., Гусева Д.С., Салафутдинов И.И. и др. Генно- клеточная терапия бокового амиотрофического склероза монону- клеарными клетками пуповинной крови человека, трансфицирован- ными генами нейронной молекулы адгезии L1CAM и сосудистого эндотелиального фактора роста VEGF. Клеточная трансплантология и тканевая инженерия 2010; 5(4): 55-65.
  39. Chen J., Bernreuther C., Dihne M. et al. Cell adhesion molecule l1-transfected embryonic stem cells with enhanced survival support regrowth of corticospinal tract axons in mice after spinal cord injury. Neurotrauma 2005; 22(8): 896-906.
  40. Bernreuther C., Dihne M., Johann V. et al. Neural cell adhesion molecule L1-transfected embryonic stem cells promote functional recovery after excitotoxic lesion of the mouse striatum. J. Neurosci. 2006; 26(45): 11532-9.
  41. Rizvanov A.A., Kiyasov A.P., Gaziziov I.M. et al. Human umbilical cord blood cells transfected with VEGF and L(1)CAM do not differentiate into neurons but transform into vascular endothelial cells and secrete neuro-trophic factors to support neuro-genesis-a novel approach in stem cell therapy. Neurochem. Int. 2008; 53(6-8): 389-94.
  42. Масгутов Р.Ф., Салафутдинов И.И., Богов А.А. и др. Стимули- рование посттравматической регенерации седалищного нерва крысы с помощью плазмиды, экспрессирующей сосудистый эндотелиаль- ный фактор роста и основной фактор роста фибробластов. Клеточная Трансплантология и Тканевая Инженерия 2011; 6(3): 67-70.
  43. Салафутдинов И.И., Шафигуллина А.К., Ялвач M.Э. и др. Эффект одновременной экспрессии различных изоформ фактора роста эндотелия сосудов VEGF и основного фактора роста фибро- бластов FGF2 на пролиферацию эндотелиальных клеток пупочной вены человека HUVEC. Клеточная Трансплантология и Тканевая Ин- женерия 2010; 5(2): 62-7.
  44. Rizvanov A.A., Guseva D.S., Salafutdinov I.I. et al. Genetically modified human umbilical cord blood cells expressing vascular endothelial growth factor and fibroblast growth factor 2 differentiate into glial cells after transplantation into amyotrophic lateral sclerosis transgenic mice. Exp. Biol. Med. 2011; 236(1): 91-8.
  45. Lepore A.C., Rauck B., Dejea C. et al. Focal transplantationbased astrocyte replacement is neuroprotective in a model of motor neuron disease. Nat. Neurosci. 2008; 11(11): 1294-301.
  46. Dimos J.T., Rodolfa K.T., Niakan K.K. et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 2008; 321(5893): 1218-21.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Эко-Вектор, 2012



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах