МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКИЕ И ЦИТОГЕНЕТИЧЕСКИЕ ОСОБЕННОСТИ ПЕРВИЧНОГО МИЕЛОФИБРОЗА



Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Первичный миелофиброз - миелопролиферативное новообразование, характеризующееся фиброзом костного мозга и риском лейкемической трансформации. Клональный гемопоэз при первичном миелофиброзе обусловлен трансформацией гемопоэтической стволовой клетки в результате соматических мутаций генома, которые могут приводить к нарушениям пролиферации и дифференцировки. Вариабельность клинического течения и прогноз первичного миелофиброза во многом определяется спектром молекулярных и цитогенетических дефектов, обнаруживаемых в опухолевых клетках. В обзоре описаны известные на сегодняшний день соматические мутации, определяемые у пациентов с первичным миелофиброзом, и рассмотрены возможные пути их патогенетического действия. Проанализированы данные о влиянии молекулярно-генетических и цитогенетических аномалий на клинические особенности и прогноз заболевания.

Полный текст

Доступ закрыт

Об авторах

Л. Б Полушкина

Российский научно-исследовательский институт гематологии и трансфузиологии ФМБА

Санкт-Петербург, Россия

И. С Мартынкевич

Российский научно-исследовательский институт гематологии и трансфузиологии ФМБА

Санкт-Петербург, Россия

В. А Шуваев

Российский научно-исследовательский институт гематологии и трансфузиологии ФМБА

Санкт-Петербург, Россия

М. С Фоминых

Российский научно-исследовательский институт гематологии и трансфузиологии ФМБА

Санкт-Петербург, Россия

Е. В Карягина

Городская больница № 15

Санкт-Петербург, Россия

А. М Саврилова

Республиканская клиническая больница

Казань, Россия

К. М Абдулкадыров

Российский научно-исследовательский институт гематологии и трансфузиологии ФМБА

Санкт-Петербург, Россия

Список литературы

  1. Абдулкадыров К. М., Шуваев В. А., Мартынкевич И. С. Первичный миелофиброз: собственный опыт и новое в диагностике и лечении. Онкогематология 2015; 2: 25-35.
  2. Barosi G., Ambrosetti A., Finelli C. et al. The Italian Conference on diagnostic criteria for myelofibrosis with myeloid metaplasia. Br. J. Haematol. 1999; 104(4): 730-37.
  3. Arber D.A., Orazi A., Hasserjian R. et al. The 2016 revision of the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016; 127 (20): 2391-405.
  4. Tefferi A. Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia 2010; (24): 1128-38.
  5. Tefferi A., Pardanani A. Myeloproliferative neoplasms. A contemporary review. JAMA Oncology 2015; 1(1): 97-105.
  6. Соколова М.А. Современные представления о «класических» Ph-негативных хронических миелопролиферативных заболеваниях. Клиническая онкогематология. Фундаментальные исследования и клиническая практика. 2010; 3(3):235-242.
  7. Pardanani A.D., Levine R.L., Lasho T. et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients Blood 2006; 108(10): 3472-6.
  8. Michalak M., Groenendyk J., Szabo E. et al. Calreticulin, a multiprocess calcium-buffering chaperone of the endoplasmic reticulum. Biochem. J. 2009; 417(3): 651-66.
  9. Araki M., Yang Y., Masubuchi N. et al. Activation of the thrombopoietin receptor by mutant calreticulin in CALR-mutant myeloproliferative neoplasms. Blood 2016; 127(10): 1307-16.
  10. Nangalia J., Massie C.E., Baxter E.J. et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N. Engl. J. Med. 2013; 369: 2391-405.
  11. Pietra D., Rumi E., Ferretti V.V. et al. Differential clinical effects of different mutation subtypes in CALR-mutant myeloproliferative neoplasms. Leukemia 2016; 30(2): 431-8.
  12. Rumi E., Pietra D., Pascutto C. et al. Clinical effect of driver mutations of JAK2, CALR, or MPL in primary myelofibrosis. Blood 2014; 124(7): 1062-9.
  13. Vainchenker W., Constantinescu S.N., Plo I. Recent advances in understanding myelofibrosis and essential thrombocytemia. F1000Res. 2016; 5. doi: 10.12688/f1000research.8081.1. 1 4. Klampfl T., Gisslinger H., Harutyunyan A.S. et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N. Engl. J. Med. 2013; 369: 2379-90.
  14. Garbati M.R., Welgan C.A., Landefeld S.H. et al. Mutant calreticulin-expressing cells induce monocyte hyperreactivity through a paracrine mechanism. Am. J. Hematol. 2016; 127(10): 1317-24.
  15. Oh S.T., Simonds E.F., Hale M.B. et al. Novel mutations in the inhibitory adaptor protein LNK drive JAK-STAT signaling in patients with myeloproliferative neoplasms. Blood 2010; 116(6): 988-92.
  16. Schwaab J., Ernst T., Erben P. et al. Activating CBL mutations are associated with a distinct MDS/MPN phenotype. Ann. Hematol. 2012; 91(11): 1713-20.
  17. Rampal R., Al-Shahrour F., Abdel-Wahab O. et al. Integrated genomic analysis illustrates the central role of JAK-STAT pathway
  18. 1 9. Shih A. H., Abdel-Wahab O., Patel J.P. et al. The role of mutations in epigenetic regulators in myeloid malignancies. Nat. Rev. Cancer. 2012; 12(9): 599-612.
  19. Milosevic J.D., Kralovics R. Genetic and epigenetic alterations of myeloproliferative disorders. Int. J. Hematol. 2013; 97: 183-97.
  20. Mascarenhas J., Roper N., Chaurasia P., Hoffman R. Epigenetic abnormalities in myeloproliferative neoplasms: a target for novel therapeutic strategies. Clin. Epigenet. 2011; 2: 197-212.
  21. Gelsi-Boyer V., Brecqueville M., Devillier R. et al. Mutations in ASXL1 are associated with poor prognosis across the spectrum of malignant myeloid diseases. J. Hematol. Oncol. 2012; 5: 12.
  22. Ernst T., Chase A.J, Score J. et al. Inactivating mutations of the histone methyltransferase. Nat. Gen. 2010; 42(8): 722-7.
  23. Su I.H., Basavaraj A., Krutchinsky A.N. et al. Ezh2 controls B cell development through histone H3 methylation and Igh rearrangement. Nat. Immunol. 2003; 4(2): 124-31.
  24. Herrera-Merchan A., Arranz L., Ligos J.M. et al. Ectopic expression of the histone methyltransferase Ezh2 in haematopoietic stem cells causes myeloproliferative disease. Nat. Commun. 2012; 3: 623.
  25. Figueroa M.E., Abdel-Wahab O., Lu C. et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 2010; 18(6): 553-67.
  26. Green A., Beer P. Somatic Mutations of IDH1 and IDH2 in the Leukemic transformation of myeloproliferative neoplasms. N. Engl. J. Med. 2010; 362: 369-70.
  27. Challen G.A., Sun D., Jeong M. et al. Dnmt3a is essential for hematopoietic stem cell differentiation. Nat. Gen. 2012; 44: 23-31.
  28. Abdel-Wahab O., Pardanani A., Rampal R. et al. DNMT3A mutational analysis in primary myelofibrosis, chronic myelomonocytic leukemia and advanced phases of myeloproliferative neoplasms Leukemia 2011; 25: 1219-20.
  29. Tefferi A., Pardanani A., Lim K-H et al. TET2 mutations and their clinical correlates in polycythemia vera, essential thrombocythemia and myelofibrosis Leukemia 2009; 23: 905-11.
  30. Yoshida K., Sanada M., Shiraishi Y. et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 2011; 478: 64-9.
  31. Komeno Y., Huang J-E, Qiu J. et al. SRSF2 Is Essential for hematopoiesis, and its myelodysplastic syndrome-related mutations dysregulate alternative pre-mRNA splicing. Mol. Cell. Biol. 2015; 35(17): 3071-82.
  32. Shirai C.L., Ley J.N., White B.S. et al. Expression alters hematopoiesis and pre-mRNA splicing in vivo. Cancer Cell 2015; 27(5): 631-43.
  33. Zhang S.J., Rampal R., Manshouri T. et al. Genetic analysis of patients with leukemic transformation of myeloproliferative neoplasms shows recurrent SRSF2 mutations that are associated with adverse outcome. Blood 2012; 119(19): 4480-5.
  34. Castro-Malaspina H., Rabellino E.M., Yen A. et al. Human megakaryocyte stimulation of proliferation of bone marrow fibroblasts. Blood 1981; 57(4): 781-7.
  35. Wagner-Ballon O., Chagraoui H., Prina E. et al. Monocyte/ macrophage dysfunctions do not impair the promotion of myelofibrosis by high levels of thrombopoietin. J. Immunol. 2006; 176(11): 6425-33.
  36. Chagraoui H., Komura E., Tulliez M. et al. Prominent role of TGF-beta 1 in thrombopoietin-induced myelofibrosis in mice. Blood 2002; 100(10): 3495-03.
  37. Barosi G. Essential thrombocythemia vs. early/prefibrotic myelofibrosis: why does it matter. Best Pract. Res. Clin. Haematol. 2014; 27(2): 129-40.
  38. Ortmann C.A, Kent D.G., Nangalia J. et al. Effect of mutation order on myeloproliferative neoplasms. N. Engl. J. Med. 2015; 372: 601-12.
  39. Tefferi A., Jimma T., Sulai N.H. et al. IDH mutations in primary myelofibrosis predict leukemic transformation and shortened survival: clinical evidence for leukemogenic collaboration with JAK2V617F Leukemia 2012; 26: 475-80.
  40. Lundberg P., Karow A., Nienhold R. et al. Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood 2014; 123(14): 2220-8.
  41. Guglielmelli P., Barosi G., Specchia G. et al. Identification of patients with poorer survival in primary myelofibrosis based on the burden of JAK2V617F mutated allele. Blood 2009; 114: 1477-83.
  42. Tefferi A., Lasho T.L., Huang J. et al. Low JAK2V617F allele burden in primary myelofibrosis, compared to either a higher allele burden or unmutated status, is associated with inferior overall and leukemia-free survival. Leukemia 2008; 22: 756-61.
  43. Singh N.R. Genomic diversity in myeloproliferative neoplasms: focus on myelofibrosis. Transl. Pediatr. 2015; 4(2): 107-15.
  44. Tefferi A., Lasho T.L., Finke C.M. et al. CALR vs JAK2 vs MPL mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons. Leukemia 2014; 28(7): 1472-7.
  45. Tefferi A., Guglielmelli P., Larson D. et al. Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis. Blood 2014; 124(16): 2507-13.
  46. Vannucchi A.M., Lasho T.L., Guglielmelli P. et al. Mutations and prognosis in primary myelofibrosis. Leukemia 2013; 27(9): 1861-9.
  47. Kim E., Abdel-Wahab O. Focus on the epigenome in the myeloproliferative neoplasms. Hematology Am. Soc. Hematol. Educ. Program 2013; 2013: 538-44.
  48. Tefferi A., Guglielmelli P., Lasho T.L. et al. CALR and ASXL1 mutations-based molecular prognostication in primary myelofibrosis: an international study of 570 patients. Leukemia 2014; 28(7): 1494-500.
  49. Vannucchi A., Guglielmelli P., Rotunno G. et al. Mutation-enhanced international prognostic scoring system (MIPSS) for primary myelofibrosis: an AGIMM&IWG-MRT project. Blood 2014; 124(21): 405.
  50. Hussein K., Van Dyke D.L., Tefferi A. Conventional cytogenetics in myelofibrosis: literature review and discussion. Euro. J. Haematol. 2009; 82: 329-38.
  51. Tefferi A., Mesa R.A., Schroeder G. et al. Cytogenetic findings and their clinical relevance in myelofibrosis with myeloid metaplasia. Br. J. Haematol. 2001; 113: 763-71.
  52. Меликян А.Л., Туркина А.Г., Абдулкадыров К.М. и др. Клинические рекомендации по диагностике и терапии Ph-негативных миелопролиферативных заболеваний (истинная полицитемия, эссенциальная тромбоцитемия, первичный миелофиброз). Гематология и трансфузиология 2014; 59(4): 31-56.
  53. Wassie E., Finke C., Gangat N. et al. A compendium of cytogenetic abnormalities in myelofibrosis: molecular and phenotypic correlates in 826 patients. Br. J. Haematol. 2015; 169(1): 71-6.
  54. Tefferi A., Guglielmelli P., Finke C. et al. Integration of mutations and karyotype towards a genetics-based prognostic scoring system (GPSS) for primary myelofibrosis. Blood 2014; 124: 406.
  55. Panani A.D. Cytogenetic and molecular aspects of Philadelphia negative chronic myeloproliferative disorders: clinical implications. Cancer letters 2007; 255: 12-25.
  56. Tam C.S., Kantarjian H., Cortes J. et al. Dynamic model for predicting death within 12 months in patients with primary or post- polycythemia vera/essential thrombocythemia myelofibrosis. J. Clin. Oncol. 2009; 27(33): 5587-93.
  57. Passamonti F., Cervantes F., Vannucchi A.M. et al. A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood 2010; 115(9): 1703-8.
  58. Gangat N., Caramazza D., Vaidya R. et al. DIPSS Plus: A refined dynamic International Prognostic Scoring System for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J. Clin. Oncol. 2011; 29(4): 392-7.
  59. Cervantes F., Dupriez B., Pereira A. et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Эко-Вектор, 2016



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах