Molecular and cytogenetic features of primary myelofibrosis



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Primary myelofibrosis is a myeloproliferative neoplasm characterized by bone marrow fibrosis and the risk of leukemic transformation. Clonal hematopoiesis underlying this pathology is caused by transformation of hematopoietic stem cells by somatic mutations of the genome which may lead to both aberrant proliferation and differentiation. The variability of the clinical course and prognosis of primary myelofibrosis is largely determined by the spectrum of molecular and cytogenetic defects detected in tumor cells. This review describes the currently known somatic mutations defined in patients with primary myelofibrosis and possible ways of their pathogenic action are discussed. Recent data of the impact of molecular and cytogenetic abnormalities in clinical features and prognosis of the disease were analyzed.

Full Text

Restricted Access

About the authors

L. B Polushkina

Russian research institute of hematology and transfusiology

Saint Petersburg, Russia

I. S Martynkevich

Russian research institute of hematology and transfusiology

Saint Petersburg, Russia

V. A Shuvaev

Russian research institute of hematology and transfusiology

Saint Petersburg, Russia

M. S Fominykh

Russian research institute of hematology and transfusiology

Saint Petersburg, Russia

E. V Karyagina

City hospital № 15

Saint Petersburg, Russia

A. M Savrilova

Republican Clinical Hospital

Kazan, Russia

K. M Abdulkadyrov

Russian research institute of hematology and transfusiology

Saint Petersburg, Russia

References

  1. Абдулкадыров К. М., Шуваев В. А., Мартынкевич И. С. Первичный миелофиброз: собственный опыт и новое в диагностике и лечении. Онкогематология 2015; 2: 25-35.
  2. Barosi G., Ambrosetti A., Finelli C. et al. The Italian Conference on diagnostic criteria for myelofibrosis with myeloid metaplasia. Br. J. Haematol. 1999; 104(4): 730-37.
  3. Arber D.A., Orazi A., Hasserjian R. et al. The 2016 revision of the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016; 127 (20): 2391-405.
  4. Tefferi A. Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia 2010; (24): 1128-38.
  5. Tefferi A., Pardanani A. Myeloproliferative neoplasms. A contemporary review. JAMA Oncology 2015; 1(1): 97-105.
  6. Соколова М.А. Современные представления о «класических» Ph-негативных хронических миелопролиферативных заболеваниях. Клиническая онкогематология. Фундаментальные исследования и клиническая практика. 2010; 3(3):235-242.
  7. Pardanani A.D., Levine R.L., Lasho T. et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients Blood 2006; 108(10): 3472-6.
  8. Michalak M., Groenendyk J., Szabo E. et al. Calreticulin, a multiprocess calcium-buffering chaperone of the endoplasmic reticulum. Biochem. J. 2009; 417(3): 651-66.
  9. Araki M., Yang Y., Masubuchi N. et al. Activation of the thrombopoietin receptor by mutant calreticulin in CALR-mutant myeloproliferative neoplasms. Blood 2016; 127(10): 1307-16.
  10. Nangalia J., Massie C.E., Baxter E.J. et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N. Engl. J. Med. 2013; 369: 2391-405.
  11. Pietra D., Rumi E., Ferretti V.V. et al. Differential clinical effects of different mutation subtypes in CALR-mutant myeloproliferative neoplasms. Leukemia 2016; 30(2): 431-8.
  12. Rumi E., Pietra D., Pascutto C. et al. Clinical effect of driver mutations of JAK2, CALR, or MPL in primary myelofibrosis. Blood 2014; 124(7): 1062-9.
  13. Vainchenker W., Constantinescu S.N., Plo I. Recent advances in understanding myelofibrosis and essential thrombocytemia. F1000Res. 2016; 5. doi: 10.12688/f1000research.8081.1. 1 4. Klampfl T., Gisslinger H., Harutyunyan A.S. et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N. Engl. J. Med. 2013; 369: 2379-90.
  14. Garbati M.R., Welgan C.A., Landefeld S.H. et al. Mutant calreticulin-expressing cells induce monocyte hyperreactivity through a paracrine mechanism. Am. J. Hematol. 2016; 127(10): 1317-24.
  15. Oh S.T., Simonds E.F., Hale M.B. et al. Novel mutations in the inhibitory adaptor protein LNK drive JAK-STAT signaling in patients with myeloproliferative neoplasms. Blood 2010; 116(6): 988-92.
  16. Schwaab J., Ernst T., Erben P. et al. Activating CBL mutations are associated with a distinct MDS/MPN phenotype. Ann. Hematol. 2012; 91(11): 1713-20.
  17. Rampal R., Al-Shahrour F., Abdel-Wahab O. et al. Integrated genomic analysis illustrates the central role of JAK-STAT pathway
  18. 9. Shih A. H., Abdel-Wahab O., Patel J.P. et al. The role of mutations in epigenetic regulators in myeloid malignancies. Nat. Rev. Cancer. 2012; 12(9): 599-612.
  19. Milosevic J.D., Kralovics R. Genetic and epigenetic alterations of myeloproliferative disorders. Int. J. Hematol. 2013; 97: 183-97.
  20. Mascarenhas J., Roper N., Chaurasia P., Hoffman R. Epigenetic abnormalities in myeloproliferative neoplasms: a target for novel therapeutic strategies. Clin. Epigenet. 2011; 2: 197-212.
  21. Gelsi-Boyer V., Brecqueville M., Devillier R. et al. Mutations in ASXL1 are associated with poor prognosis across the spectrum of malignant myeloid diseases. J. Hematol. Oncol. 2012; 5: 12.
  22. Ernst T., Chase A.J, Score J. et al. Inactivating mutations of the histone methyltransferase. Nat. Gen. 2010; 42(8): 722-7.
  23. Su I.H., Basavaraj A., Krutchinsky A.N. et al. Ezh2 controls B cell development through histone H3 methylation and Igh rearrangement. Nat. Immunol. 2003; 4(2): 124-31.
  24. Herrera-Merchan A., Arranz L., Ligos J.M. et al. Ectopic expression of the histone methyltransferase Ezh2 in haematopoietic stem cells causes myeloproliferative disease. Nat. Commun. 2012; 3: 623.
  25. Figueroa M.E., Abdel-Wahab O., Lu C. et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 2010; 18(6): 553-67.
  26. Green A., Beer P. Somatic Mutations of IDH1 and IDH2 in the Leukemic transformation of myeloproliferative neoplasms. N. Engl. J. Med. 2010; 362: 369-70.
  27. Challen G.A., Sun D., Jeong M. et al. Dnmt3a is essential for hematopoietic stem cell differentiation. Nat. Gen. 2012; 44: 23-31.
  28. Abdel-Wahab O., Pardanani A., Rampal R. et al. DNMT3A mutational analysis in primary myelofibrosis, chronic myelomonocytic leukemia and advanced phases of myeloproliferative neoplasms Leukemia 2011; 25: 1219-20.
  29. Tefferi A., Pardanani A., Lim K-H et al. TET2 mutations and their clinical correlates in polycythemia vera, essential thrombocythemia and myelofibrosis Leukemia 2009; 23: 905-11.
  30. Yoshida K., Sanada M., Shiraishi Y. et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 2011; 478: 64-9.
  31. Komeno Y., Huang J-E, Qiu J. et al. SRSF2 Is Essential for hematopoiesis, and its myelodysplastic syndrome-related mutations dysregulate alternative pre-mRNA splicing. Mol. Cell. Biol. 2015; 35(17): 3071-82.
  32. Shirai C.L., Ley J.N., White B.S. et al. Expression alters hematopoiesis and pre-mRNA splicing in vivo. Cancer Cell 2015; 27(5): 631-43.
  33. Zhang S.J., Rampal R., Manshouri T. et al. Genetic analysis of patients with leukemic transformation of myeloproliferative neoplasms shows recurrent SRSF2 mutations that are associated with adverse outcome. Blood 2012; 119(19): 4480-5.
  34. Castro-Malaspina H., Rabellino E.M., Yen A. et al. Human megakaryocyte stimulation of proliferation of bone marrow fibroblasts. Blood 1981; 57(4): 781-7.
  35. Wagner-Ballon O., Chagraoui H., Prina E. et al. Monocyte/ macrophage dysfunctions do not impair the promotion of myelofibrosis by high levels of thrombopoietin. J. Immunol. 2006; 176(11): 6425-33.
  36. Chagraoui H., Komura E., Tulliez M. et al. Prominent role of TGF-beta 1 in thrombopoietin-induced myelofibrosis in mice. Blood 2002; 100(10): 3495-03.
  37. Barosi G. Essential thrombocythemia vs. early/prefibrotic myelofibrosis: why does it matter. Best Pract. Res. Clin. Haematol. 2014; 27(2): 129-40.
  38. Ortmann C.A, Kent D.G., Nangalia J. et al. Effect of mutation order on myeloproliferative neoplasms. N. Engl. J. Med. 2015; 372: 601-12.
  39. Tefferi A., Jimma T., Sulai N.H. et al. IDH mutations in primary myelofibrosis predict leukemic transformation and shortened survival: clinical evidence for leukemogenic collaboration with JAK2V617F Leukemia 2012; 26: 475-80.
  40. Lundberg P., Karow A., Nienhold R. et al. Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood 2014; 123(14): 2220-8.
  41. Guglielmelli P., Barosi G., Specchia G. et al. Identification of patients with poorer survival in primary myelofibrosis based on the burden of JAK2V617F mutated allele. Blood 2009; 114: 1477-83.
  42. Tefferi A., Lasho T.L., Huang J. et al. Low JAK2V617F allele burden in primary myelofibrosis, compared to either a higher allele burden or unmutated status, is associated with inferior overall and leukemia-free survival. Leukemia 2008; 22: 756-61.
  43. Singh N.R. Genomic diversity in myeloproliferative neoplasms: focus on myelofibrosis. Transl. Pediatr. 2015; 4(2): 107-15.
  44. Tefferi A., Lasho T.L., Finke C.M. et al. CALR vs JAK2 vs MPL mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons. Leukemia 2014; 28(7): 1472-7.
  45. Tefferi A., Guglielmelli P., Larson D. et al. Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis. Blood 2014; 124(16): 2507-13.
  46. Vannucchi A.M., Lasho T.L., Guglielmelli P. et al. Mutations and prognosis in primary myelofibrosis. Leukemia 2013; 27(9): 1861-9.
  47. Kim E., Abdel-Wahab O. Focus on the epigenome in the myeloproliferative neoplasms. Hematology Am. Soc. Hematol. Educ. Program 2013; 2013: 538-44.
  48. Tefferi A., Guglielmelli P., Lasho T.L. et al. CALR and ASXL1 mutations-based molecular prognostication in primary myelofibrosis: an international study of 570 patients. Leukemia 2014; 28(7): 1494-500.
  49. Vannucchi A., Guglielmelli P., Rotunno G. et al. Mutation-enhanced international prognostic scoring system (MIPSS) for primary myelofibrosis: an AGIMM&IWG-MRT project. Blood 2014; 124(21): 405.
  50. Hussein K., Van Dyke D.L., Tefferi A. Conventional cytogenetics in myelofibrosis: literature review and discussion. Euro. J. Haematol. 2009; 82: 329-38.
  51. Tefferi A., Mesa R.A., Schroeder G. et al. Cytogenetic findings and their clinical relevance in myelofibrosis with myeloid metaplasia. Br. J. Haematol. 2001; 113: 763-71.
  52. Меликян А.Л., Туркина А.Г., Абдулкадыров К.М. и др. Клинические рекомендации по диагностике и терапии Ph-негативных миелопролиферативных заболеваний (истинная полицитемия, эссенциальная тромбоцитемия, первичный миелофиброз). Гематология и трансфузиология 2014; 59(4): 31-56.
  53. Wassie E., Finke C., Gangat N. et al. A compendium of cytogenetic abnormalities in myelofibrosis: molecular and phenotypic correlates in 826 patients. Br. J. Haematol. 2015; 169(1): 71-6.
  54. Tefferi A., Guglielmelli P., Finke C. et al. Integration of mutations and karyotype towards a genetics-based prognostic scoring system (GPSS) for primary myelofibrosis. Blood 2014; 124: 406.
  55. Panani A.D. Cytogenetic and molecular aspects of Philadelphia negative chronic myeloproliferative disorders: clinical implications. Cancer letters 2007; 255: 12-25.
  56. Tam C.S., Kantarjian H., Cortes J. et al. Dynamic model for predicting death within 12 months in patients with primary or post- polycythemia vera/essential thrombocythemia myelofibrosis. J. Clin. Oncol. 2009; 27(33): 5587-93.
  57. Passamonti F., Cervantes F., Vannucchi A.M. et al. A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood 2010; 115(9): 1703-8.
  58. Gangat N., Caramazza D., Vaidya R. et al. DIPSS Plus: A refined dynamic International Prognostic Scoring System for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J. Clin. Oncol. 2011; 29(4): 392-7.
  59. Cervantes F., Dupriez B., Pereira A. et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies