INSULIN-PRODUCING CELLS IN THE TREATMENT OF INSULIN-DEPENDENT DIABETES MELLITUS

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

An effective treatment for insulin-dependent diabetes mellitus (DM), which provides an alternative to hormone replacement therapy, is transplantation of insulin-producing cells (IPCs). Donor β-cells are transplanted both in the form of a complete pancreas, or in the form of isolated islets of Langerhans. However, the application of this method is limited due to the lack of donor material and the need for lifelong immunosuppressive therapy that has a detrimental impact on the weakened DM patient's body. An alternative method of obtaining IPCs is to differentiate stem or progenitor cells. Pancreatic differentiation capability has been demonstrated for various types of stem cells Currently, induced pluripotent stem cell IPSC) are considered to be the most promising source of IPCs, including those obtained from mature cells of the patients themselves Firstly, such IPCs can be gained in unlimited quantities. Secondly, in the case of autologous transplantation they are least exposed to the recipient body's immune attack, thereby making it possible to completely discard immunosuppressive therapy. IPSCs introduction into clinical practice is hindered by the fact that they provoke the formation of teratomas in the recipient>s body. Moreover, they retain this ability even after differentiation because of a number of undifferentiated cells preserved in the population This review focuses on contemporary protocols for obtaining IPCs from IPSCs. These protocols mimic β-cells formation stages during embryonic development. The review also covers the application of IPC immuno-isolating containers for transplantation. Their semipermeable walls, on the one hand, protect the transplant from the recipient>s immune system, and on the other hand, they suppress the risk of the transplant causing tumor formation. in addition, attention will be paid to the use of IPCs derived from IPSCs as a model object for studying the processes occurring in β-cells at normal circumstances as well as during DM.

Full Text

Restricted Access

About the authors

M. Y Sheremetieva

Research Centre of Medical Genetics

Email: m.e.sheremetieva@gmail.com

T. B Bukharova

Research Centre of Medical Genetics

D. V Goldstein

Research Centre of Medical Genetics

References

  1. International Diabetes Federation. http://www. idf.org.
  2. Дедов И.И., Лисуков И.А., Лаптев Д.Н. Современные возможности применения стволовых клеток при сахарном диабете Сахарный диабет 2014; 2: 20-8.
  3. Barton F., Rickels M., Alejandro R. et al. improvement in outcomes of clinical islet transplantation: 1999-2010. Diabetes Care 2012; 35(7): 1436-45.
  4. Lauria M.W., Figueir J.M., Machado L.J.C. et al. Metabolic long-term follow-up of functioning simultaneous pancreas-kidney transplantation versus pancreas transplantation alone: insights and limitations. Transplantation 2010; 89(1): 83-7.
  5. White S.A., Shaw J.A., Sutherland D.E.R. Pancreas transplantation. Lancet 2009; 373(9677): 1808-17.
  6. Rickels M.R. Recovery of endocrine function after islet and pancreas transplantation. Curr. Diab. Rep. 2012; 12(5): 587-96.
  7. Shapiro A., Lakey J., Ryan E. et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen N Engl j Med 2000; 343(4): 230-8
  8. Mason C., Dunnill P. Assessing the value of autologous and allogeneic cells for regenerative medicine. Regen Med. 2009; 4(6): 835-53.
  9. Shapiro A.M., Ricordi C., Hering B J. et al. international trial of the Edmonton protocol for islet transplantation N Engl j Med 2006; 355: 1318-30.
  10. Meloche R.M. Transplantation for the treatment of type 1 diabetes. World J. Gastroenterol. 2007; 13(47): 6347-55.
  11. Nostro M.C., Keller G. Generation of beta cells from human pluripotent stem cells: potential for regenerative medicine Semin Cell Dev. Biol. 2012; 23(6): 701-10.
  12. Ryan E., Bigam D., Shapiro A. Current indications for pancreas or islet transplant. Diabetes Obes. Metab. 2006; 8(1): 1-7.
  13. Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors Cell 2006; 126(4): 663-76.
  14. Takahashi K., Tanabe K., Ohnuki M. et al. induction of pluripotent stem cells from adult human fibroblasts by defined factors Cell 2007; 131(5): 861-72.
  15. Stadtfeld M., Hochedlinger K. induced pluripotency: history, mechanisms and applications. Genes Dev. 2010; 24(20): 2239-63.
  16. Lieu P.T., Fontes A., Vemuri M.C. et al. Generation of induced pluripotent stem cells with CytoTune, a non-integrating Sendai virus. Methods Mol. Biol. 2013; 997: 45-56.
  17. Anokye-Danso F., Trivedi C.M., Juhr D. et al. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 2011; 8(4): 376-88.
  18. Çaglayan E. S, Güran Ş. Importance of Myc-related microRNAs in induced pluripotency. Cell Biol. int. 2015; 39(9): 987-94.
  19. Shahjalal H.M., Shiraki N., Sakano D. et al. Generation of insulin-producing b-like cells from human iPS cells in a defined and completely xeno-free culture system j Mol Cell Biol 2014; 6(5): 394-408.
  20. Chen G., Gulbranson D.R., Hou Z. et al. Chemically defined conditions for human iPSC derivation and culture. Nat. Methods 2011; 8(5): 424-29
  21. Abdelalim E.M., Bonnefond A., Bennaceur-Griscelli A. et al. Pluripotent stem cells as a potential tool for disease modelling and cell therapy in diabetes. Stem Cell Rev. 2014; 10(3): 327-37.
  22. Stepniewski J., Kachamakova-Trojanowska N., Ogrocki D. et al. Induced pluripotent stem cells as a model for diabetes investigation Sci Rep 2015; 5: 8597.
  23. Thatava T., Kudva Y.C., Edukulla R. et al. intrapatient variations in type 1 diabetes-specific iPS cells differentiation into insulin-producing cells. Mol. Ther. 2013; 21(1): 228-39.
  24. Abdelalim E.M., Emara M.M. Advances and challenges in the differentiation of pluripotent stem cells into pancreatic β-cells World J. Stem Cells 2015; 7(1): 174-81.
  25. Pagliuca F.W., Millman J.R., Gürtler M. et al. Generation of functional human pancreatic beta cells in vitro. Cell 2014; 159(2): 428-39
  26. Rezania A., Bruin J.E., Arora P. et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat. Biotechnol. 2014; 32(11): 1121-33.
  27. Прощина А.Е., Савельев С.В. Иммуногистохимическое исследование распределения α- и β-клеток в разных типах островков Лангерганса поджелудочной железы человека. Бюллетень экспериментальной биологии и медицины 2013; 155(6): 763-7.
  28. Hoogwerf B.J., Goetz F.C. Urinary C-peptide: a simple measure of integrated insulin production with emphasis on the effects of body size, diet, and corticosteroids. J. Clin. Endocrinol. Metab. 1983; 56(1): 60-7.
  29. Jeon J., Correa-Medina M., Ricordi C. et al. Endocrine cell clustering during human pancreas development. J. Histochem. Cytochem. 2009; 57(9): 811-24.
  30. Marquez-Aguirre A.L., Canales-Aguirre A.A., Padilla-Camberos E et al. Development of the endocrine pancreas and novel strategies for β-cell mass restoration and diabetes therapy. Braz. J. Med. Biol. Res. 2015; 48(9): 765-76.
  31. Kumar S.S., Alarfaj A.A., Munusamy M.A. Recent developments in ß-cell differentiation of pluripotent stem cells induced by small and large molecules. int. J. Mol. Sci. 2014; 15(12): 23418-47.
  32. Liew Ch.-G Generation of insulin-producing cells from pluripotent stem cells: from the selection of cell sources to the optimization of protocols. Rev. Diabet Stud. 2010; 7(2): 82-92.
  33. Петеркова В.А., Лаптев Д.Н. Перспективы терапии, направленной на восстановление пула β-клеток, при сахарном диабете. Сахарный диабет 2009; 3: 6-9
  34. D’Amour K.A., Bang A.G., Eliazer S. et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat. Biotechnol. 2006; 24(11): 1392-401.
  35. Jiang J., Au M., Lu K. et al. Generation of insulin-producing islet-like clusters from human embryonic stem cells. Stem Cells 2007; 25(8): 1940-53.
  36. Shim J.H., Kim S.E., Woo D.H. et al. Directed differentiation of human embryonic stem cells towards a pancreatic cell fate Diabetologia 2007; 50(6): 1228-38.
  37. Kroon E., Martinson L.A., Kadoya K. et al. Pancreatic endoderm derived from human embryonic stem cells generates glucoseresponsive insulin-secreting cells in vivo. Nat. Biotechnol. 2008; 26(4): 443-52.
  38. Chen S., Borowiak M., Fox J.L. et al. A small molecule that directs differentiation of human ESCs into the pancreatic lineage Nat Chem. Biol. 2009; 5(4): 258-65.
  39. Kunisada Y., Tsubooka-Yamazoe N., Shoji M. et al. Small molecules induce efficient differentiation into insulin-producing cells from human induced pluripotent stem cells. Stem Cell Res. 2012; 8(2): 274-84
  40. Nostro M.C., Sarangi F., Ogawa S. et al. Stage-specific signaling through TGFb family members and WNT regulates patterning and pancreatic specification of human pluripotent stem cells Development 2011; 138(5): 861-71.
  41. Thatava T., Nelson T.J., Edukulla R. et al. Indolactam V/GLP-1-mediated differentiation of human IPS cells into glucoseresponsive insulin-secreting progeny. Gene Ther. 2011; 18(3): 283-93.
  42. Hosoya M. Preparation of pancreatic β-cells from human IPS cells with small molecules. islets 2012; 4(3): 249-52.
  43. Hosoya M., Kunisada Y., Kurisaki A. et al. induction of differentiation of undifferentiated cells into pancreatic beta cells in vertebrates. int. J. Dev. Biol. 2012; 56(5): 313-23.
  44. Rezania A., Riedel M., Wideman R.D. et al. Production of functional glucagon-secreting а-cells from human embryonic stem cells. Diabetes 2011; 60(1): 239-47.
  45. Федюнина И.А., Ржанинова А.А., Кириенко Е.Е. и соавт. Получение инсулинпродуцирующих клеток из разных популяций мультипотентных стромальных клеток пупочного канатика и жировой ткани человека Клеточные технологии в биологии и медицине 2011; 1: 10-6.
  46. Kubo A., Stull R., Takeuchi M. et al. Pdx1 and Ngn3 overexpression enhances pancreatic differentiation of mouse ES cells derived endoderm population. PLoS One 2011; 6(9): e24058.
  47. Xu H., Tsang K.S., Chan J.C. et al. The combined expression of Pdx1 and MafA with either Ngn3 of NeuroD improves the differentiation efficiency of mouse embryonic stem cells into insulin-producing cells. Cell Transplant. 2013; 22(1): 147-58.
  48. Kaitsuka T., Noguchi H., Shiraki N. et al. Generation of functional insulin-producing cells from mouse embryonic stem cells through 804G cell-derived extracellular matrix and protein transduction of transcription factors. Stem Cells Transl. Med. 2014; 3(1): 114-27.
  49. Qin Y., Xiao L., Zhan X.B. et al. Pdx1 and its role in activating Ngn3 and Pax6 to induce differentiation of iPSCs into islet β cells Genet. Mol. Res. 2015; 14(3): 8892-900.
  50. Wang L., Huang Y., Guo Q. et al. Differentiation of IPSCs into insulin-producing cells via adenoviral transfection of PDX-1, NeuroD1 and MafA. Diabetes Res. Clin. Pract. 2014; 104(3): 383-92.
  51. Xu H., Browning W., Odorico J. Activin, BMB and FGF pathways cooperate to promote endoderm and pancreatic lineage cell differentiation from human embryonic stem cells. Mech. Dev. 2011; 128(7-10): 412-27.
  52. Johannesson M., Stáhlberg A., Ameri J. et al. FGF4 and retinoic acid direct differentiation of hESC into PDX1-expressing foregut endoderm in a time- and concentration-dependent manner. PLoS One 2009; 4(3): e4794
  53. Lahmy R., Soleimani M., Sanati M.H. et al. miRNA-375 promotes beta pancreatic differentiation in human induced pluripotent stem (hiPS) cells. Mol. Biol. Rep. 2014; 41(4): 2055-66.
  54. Shaer A., Azarpira N., Karimi M.H. Differentiation of human induced pluripotent stem cells into insulin-like cell clusters with miR-186 and miR-375 by using chemical transfection. Appl. Biochem. Biotechnol. 2014; 174(1): 242-58.
  55. Shaer A., Azarpira N., Karimi M.H. et al. Differentiation of human-induced pluripotent stem cells into insulin-producing clusters by microRNA-7. Exp. Clin. Transplant. 2015; [Epub ahead of print].
  56. Hakim F., Kaitsuka T., Raeed J.M. et al. High oxygen condition facilitates the differentiation of mouse and human pluripotent stem cells into pancreatic progenitors and insulin-producing cells. J. Biol. Chem. 2014; 289(14): 9623-38.
  57. Takeuchi H., Nakatsuji N., Suemori H. Endodermal differentiation of human pluripotent stem cells to insulin-producing cells in 3D culture. Sci. Rep. 2014; 4: 4488.
  58. Bose B., Shenoy S.P. in vitro differentiation of pluripotent stem cells into functional ß islets under 2D and 3D culture conditions and in vivo preclinical validation of 3D islets. Methods Mol. Biol. 2016; 1341: 257-84.
  59. Shim J., Kim J., Han J. et al. Pancreatic islet-like threedimensional aggregates derived from human embryonic stem cells ameliorate hyperglycemia in streptozotocin-induced diabetic mice. Cell Transplant. 2015; 24(10): 2155-68.
  60. Raikwar P.S., Kim E.M., Sivitz W. I. et al. Human iPS cell-derived insulin producing cells form vascularized organoids under the kidney capsules of diabetic mice. PLoS One 2015; 10(1): e0116582.
  61. Shaer A., Azarpira N., Vahdati A. et al. Differentiation of human-induced pluripotent stem cells into insulin-producing clusters. Exp. Clin. Transplant. 2015a; 13(1): 68-75.
  62. Bar-Nur O., Russ H. A., Efrat S. et al. Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell 2011; 9(1): 17-23.
  63. Micallef S.J., Li X., Schiesser J.V. et al. iNSGFP/w human embryonic stem cells facilitate isolation of in vitro derived insulin-producing cells. Diabetologia 2012; 55(3): 694-706.
  64. Schulz T.C., Young H.Y., Agulnick A.D. et al. A scalable system for production of functional pancreatic progenitors from human embryonic stem cells. PLoS One 2012; 7(5): e37004.
  65. Pellegrini S., Ungaro F., Mercalli A. et al. Human induced pluripotent stem cells differentiate into insulin-producing cells able to engraft in vivo. Acta Diabetol. 2015; 52(6): 1025-35.
  66. Rostovskaya M., Bredenkamp N., Smith A. Towards consistent generation of pancreatic lineage progenitors from human pluripotent stem cells. Philos. Trans. R. Soc. Lond. B Biol Sci. 2015; 370(1680): 20140365
  67. Colton C.K. Oxygen supply to encapsulated therapeutic cells. Adv. Drug. Deliv. Rev. 2014; 67-68: 93-110.
  68. de Vos P., Lazarjani H.A., Poncelet D. et al. Polymers in cell encapsulation from an enveloped cell perspective. Adv. Drug Deliv. Rev. 2014; 67-68: 15-34.
  69. Scharp D.W., Marchetti P. Encapsulated islets for diabetes therapy: history, current progress, and critical issues requiring solution. Adv. Drug Deliv. Rev. 2014; 67-68: 35-73.
  70. Chen S.H., Huang S.C., Lui C.C. et al. Effect of TheraCyteencapsulated parathyroid cells on lumbar fusion in a rat model. Eur Spine J. 2012; 21(9): 1734-9.
  71. Bruin J.E., Rezania A., Xu J. et al. Maturation and function of human embryonic stem cell-derived pancreatic progenitors in macroencapsulation devices following transplant into mice. Diabetologia 2013; 56(9): 1987-98.
  72. Yakhnenko I., Wong W.K., Katkov I. I. et al. Cryopreservation of human insulin expressing cells macro-encapsulated in a durable therapeutic immunoisolating device theracyte. Cryo Letters 2012; 33(6): 518-31.
  73. Kumagai-Braesch M., Jacobson S., Mori H. et al. The TheraCyte™ device protects against islet allograft rejection in immunized hosts. Cell Transplant. 2013; 22(7): 1137-46.
  74. Kirk K., Hao E., Lahmy R. et al. Human embryonic stem cell derived islet progenitors mature inside an encapsulation device without evidence of increased biomass or cell escape. Stem Cell Res. 2014; 12(3): 807-14.
  75. Sweet I.R., Yanay O., Waldron L. et al. Treatment of diabetic rats with encapsulated cells. J. Cell Mol. Med. 2008; 12(6B): 2644-50.
  76. Lee S.H., Hao E., Savinov A. et al. Human β-cell precursors mature into functional insulin-producing cells in an immunoisolation device: implications for diabetes cell therapies. Transplantation 2009; 87(7): 983-91.
  77. Neufeld T., Ludwig B., Barkai U. et al. The efficacy of an immunoisolating membrane system for islet xenotransplantation in minipigs. PLoS One 2013; 8(8): e70150.
  78. Viacyte, clinical trials. http://viacyte. com/clinical/clinical-trials.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies