Realities and prospects of gene therapy in cardiovascular surgery

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The relevance pathology of the cardiovascular system,
the development of effective treatments for patients with
coronary heart disease, chronic lower limb ischemia are
undeniable. New approaches are developed considering
limitations of feasibility and efficacy of standard methods
of treatment (surgical and conservative). Gene therapy is
one of the most promising. This review covers the results
of experimental and clinical studies to assess the position of
gene therapy in cardiovascular surgery and medicine today
and in the future.

About the authors

N D Mzhavanadze

Ryazan State Medical University, Ryazan

Ryazan State Medical University, Ryazan

I Y Bozo

Human Stem Cells Institute, Moscow

Human Stem Cells Institute, Moscow

R E Kalinin

Ryazan State Medical University, Ryazan

Ryazan State Medical University, Ryazan

R V Deev

Human Stem Cells Institute, Moscow

Human Stem Cells Institute, Moscow

References

  1. Cardiovascular diseases (CVDs). Fact sheet N 317, 2011. http://www.who.int/mediacentre/factsheets/fs317/en/index.html.
  2. Global atlas on cardiovascular disease prevention and control. http://whqlibdoc.who.int/publications/2011/9789241564373_eng. pdf .
  3. Maier P., von Kalle C., Laufs S. et al. Retroviral vectors for gene therapy. Future Microbiol. 2010; 5(10): 1507-23.
  4. Hammond H.K., McKirnan M.D. Angiogenic gene therapy for heart disease: a review of animal studies and clinical trials. Cardiovasc. Res. 2001; 49(3): 561-7.
  5. Niidome T., Huang L. Gene therapy progress and prospects: nonviral vectors. Gene Ther. 2002; 9(24): 1647-52.
  6. Rosenberg S.A., Aebersold P., Cornetta K. et al. Gene transfer into humans immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. New Eng. J. Med. 1990. 323(9): 570-8.
  7. Phases of gene therapy clinical trials. Gene therapy clinical trials worldwide, provided by the journal of Gene medicine. Mode of access: http://www.wiley.com//legacy/wileychi/genmed/clinical/
  8. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat. Med. 2000; 6(4): 389-95.
  9. Hedman M., Muona K., Hedman A. et al. Eight-year safety follow-up of coronary artery disease patients after local intracoronary VEGF gene transfer. Gene Ther. 2009; 16(5): 629-34.
  10. Endocardial vascular endothelial growth factor-D (VEGF-D) gene therapy for the treatment of severe coronary heart disease (KAT301). http://clinicaltrials.gov/ct2/show/NCT01002430?term=V EGFD+gene+therapy&rank=1.
  11. Efficacy and safety of Ad5FGF-4 for myocardial ischemia in patients with stable angina due to coronary artery disease (ASPIRE). http://clinicaltrials.gov/ct2/show/NCT01550614?term=gene+thera py+Coronary+Heart+Disease+Phase+3&rank=8.
  12. Henry T.D., Grines C.L., Watkins M.W. et al. Effects of Ad5FGF-4 in patients with angina: an analysis of pooled data from the AGENT-3 and AGENT-4 trials. J. Am. Coll. Cardiol. 2007; 50(11): 1038-46.
  13. Safety study of gene therapy for ischemic heart disease in korea. http://clinicaltrials
  14. Gene therapy for the treatment of chronic stable angina. http:// clinicaltrials.gov/ct2/show/NCT01002495?term=ViroMed&rank=8.
  15. Angiogenesis using VEGF-A165/bFGF plasmid delivered percutaneously in no-option CAD patients; a controlled trial (VIF-CAD). http://clinicaltrials.gov/ct2/show/NCT00620217?term=Angiogenesis +Using+VEGF-A165%2FbFGF+Plasmid+Delivered+Percutaneousl y+in+No-option+CAD+Patients%3B+a+Controlled+Trial+%28 VIF-CAD%29&rank=1.
  16. Kukuła K., Chojnowska L., Dąbrowski M. et al. Intramyocardial plasmid-encoding human vascular endothelial growth factor A165/basic fibroblast growth factor therapy using percutaneous transcatheter approach in patients with refractory coronary artery disease (VIFCAD). Am. Heart J. 2011; 161(3): 581-9.
  17. Шойхет Я.Н., Хореев Н.Г. Клеточные технологии в лечении заболеваний периферических артерий. Клеточная трансплантоло- гия и тканевая инженерия 2011; VI(3): 15-23.
  18. Интервью с Президентом Российского общества ангиологов и сосудистых хирургов академиком РАМН профессором Анатолием Владимировичем Покровским. Клеточная трансплантология и тка- невая инженерия 2011; VI(3): 13-14.
  19. Швальб П.Г., Гавриленко А.В., Калинин Р.Е. и др. Эффек- тивность и безопасность применения препарата «Неоваскулген» в комплексной терапии пациентов с хронической ишемией нижних конечностей (IIb-III фаза клинических испытаний). Клеточная транс- плантология и тканевая инженерия. 2011 Сентябрь; Том VI (3): 76-83.
  20. Талицкий К.А., Булкина О.С., Арефьева Т.И. и др. Эффек- тивность терапевтического ангиогенеза у больных с хронической ишемией нижних конечностей. Клеточная трансплантология и тка- невая инженерия 2011; VI(3): 76-83.
  21. Парфенова Е.В., Ткачук В.А. Терапевтический ангиогенез: достижения, проблемы, перспективы. Кардиологический вестник 2007; 2(2): 5-15.
  22. А.А. Исаев. Генная терапия: Китай и Россия опережают США. http://www.celltranspl.ru/blog/post/76.
  23. Adenovirus Vascular Endothelial Growth Factor (VEGF) Therapy in Vascular Access - Novel Trinam AGainst Control Evidence (AdV-VANTAGE). http://clinicaltrials.gov/ct2/show/ NCT00895479?term=Trinam&rank=1.
  24. Walter D.H., Cejna M., Diaz-Sandoval L. et al. Local gene transfer of phVEGF-2 plasmid by gene-eluting stents: an alternative strategy for inhibition of restenosis. Circulation 2004; 110(1): 36-45.
  25. Jin X., Mei L., Song C. et al. Immobilization of plasmid DNA on an anti-DNA antibody modified coronary stent for intravascular sitespecific gene therapy. J. Gene Med. 2008; 10(4): 421-9.
  26. Brito L., Little S., Langer R. et al. Poly(beta-amino ester) and cationic phospholipid-based lipopolyplexes for gene delivery and transfection in human aortic endothelial and smooth muscle cells. Biomacromolecules 2008; 9(4): 1179-87.
  27. Barbato J.E., Tzeng E. Nitric oxide and arterial disease. J. Vasc. Surg. 2004; 40: 187-93.
  28. Zhang L.H., Luo T., Zhang C. et al. Anti-DNA antibody modified coronary stent for plasmid gene delivery: results obtained from a porcine coronary stent model. J. Gene Med. 2011; 13(1): 37-45.
  29. Brito L.A., Chandrasekhar S., Little S.R. et al. Non-viral eNOS gene delivery and transfection with stents for
  30. Hedman M., Hartikainen J., Syvänne M. Safety and feasibility of catheter-based local intracoronary vascular endothelial growth factor gene transfer in the prevention of postangioplasty and in-stent restenosis and in the treatment of chronic myocardial ischemia: phase II results of the Kuopio Angiogenesis Trial (KAT). Circulation 2003; 107(21): 2677-83.
  31. García-García H.M., Vaina S., Tsuchida K. et al. Drug-eluting stents. Arch. Cardiol. Mex. 2006; 76(3): 297-319.
  32. Kastrati A., Mehilli J., Dirschinger J. et al. Restenosis after coronary placement of various stent types. Am. J. Cardiol. 2001, 87: 34-9.
  33. Деев Р.В., Григорян А.С., Потапов И.В. и др. Мировой опыт и тенденции генотерапии ишемических заболеваний. Ангиология и сосудистая хирургия 2011; 17(2): 145-54.
  34. Creager M.A., Olin J.W., Belch J.J. et al. Effect of hypoxiainducible factor-1alpha gene therapy on walking performance in patients with intermittent claudication. Circulation 2011; 124(16): 1765-73.
  35. Study to Evaluate the Safety and Efficacy of JVS-100 Administered to Adults With Critical Limb Ischemia. http://clinicaltrials. gov/ct2/show/NCT01410331?term=Juventas&rank=2.
  36. Shigematsu H., Yasuda K., Iwai T. et al. Randomized, doubleblind, placebo-controlled clinical trial of hepatocyte growth factor plasmid for critical limb ischemia. Gene Ther. 2010; 17(9): 1152-61.
  37. Safety and efficacy study using gene therapy for critical limb ischemia. http://clinicaltrials.gov/ct2/results?term=Safety+and+Effic acy+Study+Using+Gene+Therapy+for+Critical+Limb+Ischemia.
  38. Safety and efficacy study using gene therapy for critical limb ischemia. http://clinicaltrials.gov/ct2/show/NCT01064440?term=Saf ety+and+Efficacy+Study+Using+Gene+Therapy+for+Critical+ Limb+Ischemia&rank=1.
  39. Belch J., Hiatt W.R., Baumgartner I. et al. Effect of fibroblast growth factor NV1FGF on amputation and death: a randomised placebocontrolled trial of gene therapy in critical limb ischaemia. Lancet 2011; 377(9781): 1929-37.
  40. Nikol S., Baumgartner I., Van Belle E. et al. Therapeutic angiogenesis with intramuscular NV1FGF improves amputation-free survival in patients with critical limb ischemia. Mol Ther. 2008; 16(5): 972-8.
  41. Niebuhr A., Henry T., Goldman J. et al. Long-term safety of intramuscular gene transfer of non-viral FGF1 for peripheral artery disease. Gene Ther. 2012; 19(3): 264-70.
  42. Деев Р.В., Червяков Ю.В., Калинин Р.Е., Исаев А.А. Теоре- тические и практические аспекты применения препарата на основе нуклеиновой кислоты, кодирующей эндотелиальный сосудистый фактор роста («Неоваскулген»). Ангиология 2012; 1: 43-50.
  43. EW-A-401 to treat intermittent claudication. http:// clinicaltrials.gov/ct2/show/NCT00080392?term=EW-A-401+to+Tr eat+Intermittent+Claudication&rank=1.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2012 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies