OPTIMIZATsIYa TEKhNOLOGII KUL'TIVIROVANIYa DERMAL'NYKh FIBROBLASTOV DLYa TERAPEVTIChESKIKh TsELEY S POMOShch'Yu ROBOTIZIROVANNOY STANTsII



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The potential of the automated cell culture system CompacT SelecT (TAP Biosystems, UK) allows using it for the large scale production of dermal fibroblasts for cell therapy. Automated maintenance and expansion of fibroblasts requires evaluation of the proper seeding density and defining the time for the achievement of the optimal confluency of cell monolayer for further passaging. Objective - to determine the optimal parameters of dermal fibroblasts passaging for development of standardized protocol for automated cell cultivation using CompacT SelecT system. Human dermal fibroblasts were isolated from donor skin samples by enzyme dissociation. Cells proliferation rate was evaluated by the calculation of proliferation index. The dependence of proliferation rate from cell monolayer density was determined using the value of average number of divisions of single cell per day. The dependence of fibroblasts proliferation rate from seeding density (from 50 to 1.2х104cells/cm2) in various periods of cultivation (3rd, 5th, 7th and 9th day) was investigated. The inverse correlation between proliferation rate and seeding density, together with dramatic decrease of proliferation rate at fibroblasts monolayer confluency of (3.5-4.5)х104 cells/cm2, was demonstrated. The optimal seeding density was evaluated as 3х103 cells/ cm2, the most suitable density of cell monolayer for further passaging was evaluated as 3.5х104 cells/cm2. In case of high seeding density (1.2х104 cells/cm2), on day 7, when the cell monolayer density reached the critical value, the cell extinction occured, followed by renewal of cell growth. This phenomenon may be explained by the selection of cells capable of replication under conditions of high density of monolayer.

Full Text

Restricted Access

About the authors

F. A Fadeyev

Institute of Medical Cell Technologies

Ekaterinburg, Russia

M. V Ulitko

Institute of Medical Cell Technologies

Ekaterinburg, Russia

D. V Lugovets

Institute of Medical Cell Technologies

Ekaterinburg, Russia

S. L Leontyev

Institute of Medical Cell Technologies

Ekaterinburg, Russia

S. V Sazonov

Institute of Medical Cell Technologies

Ekaterinburg, Russia

References

  1. Алексеев А.А., Попов С.В. Современные методы трансплантации культивированных клеток кожи и ее эквивалентов при лечении ожогов. Комбустиология 1999; 1: 22-5.
  2. Зорин В.Л., Зорина А.И., Петракова О.С. и др. Дермальные фибробласты для лечения дефектов кожи. Клеточная трансплантология и тканевая инженерия 2009; IV (4): 26-40.
  3. Фадеев Ф.А., Сергеев А.Г. Использование первичных клеточных культур для лечения ожогов кожи. Вестник уральской медицинской академической науки 2013; 46(4): 134-7.
  4. Mehrabani D., Manafi N. Role of cultured skin fibroblasts in aesthetic and plastic surgery. World J. Plast. Surg. 2013; 2(1): 2-5.
  5. Moravvej H., Rad M., Toossi P. et al. Development of an allogeneic cultured dermal substitute using a standard human fibroblast bank. Iranian J. Dermatology 2009; 12(4): 111-6.
  6. Келлер Г., Себастиан Дж., Лакомбе Ю. и др. Сохранность инъецируемых аутологичных человеческих фибробластов. Бюллетень экспериментальной биологии и медицины 2000; 130(8): 203-6.
  7. Thomas R., Chandra A., Liu Ya. et al. Manufacture of a human mesenchymal stem cell population using an automated cell culture platform. Cytotechnology 2007; 55: 31-9.
  8. Фадеев Ф.А., Луговец Д.В., Улитко М.В. Возможности использования технологии автоматизированного культивирования при получении клеточных линий для терапевтического применения. В: С.Л. Леонтьев, редактор. Материалы IV межрегиональной научнопрактической конференции «Клеточные технологии практическому здравоохранению»; 2015 21-23 октября; Екатеринбург, Россия. Екатеринбург: Изд-во Вестник Уральской медицинской академической науки; 2015. с. 57-62.
  9. Takashima A. Establishment of fibroblast cultures. In: Bonifacino J., Harford J., Lippincott-Schwartz J. et al., editors. Curr. Protoc. Cell Biol.; Chapter 2: Unit 2.1. Hoboken, N.J., USA: John Wiley & Sons, Inc.; 2001. p. 2.1.1-12.
  10. Kenagy R., Bierman E., Schwartz S. Regulation of low-density lipoprotein metabolism by cell density and proliferative state. J. Cell Physiol. 1983; 116(3): 404-8.
  11. Heit I., Wieser R., Herget T. et al. Involvement of protein kinase CS in contact-dependent inhibition of growth in human and murine fibroblasts. Oncogene 2001; 20: 5143-54.
  12. Moldaver M., Yegorov Y.E. Sparse plating increases the heterogeneity of proliferative potential of fibroblasts. Mechanisms of Ageing and Development 2009; 130: 337-42.
  13. Masur S., Dewal H., Dinh T. et al. Myofibroblasts differentiate from fibroblasts when plated at low density. PNAS USA 1996; 93: 4219-23.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies