The role of LIF-STAT3 signaling in maintaining self-renewal and pluripotent state and in rat cells



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Laboratory rat is one of the oldest and best studied objects of physiology and experimental medicine. However, rat pluripotent cells (embryonic and induced pluripotent stem cells) have been obtained relatively recently and remains poorly understood in terms of their transcriptome, proteome, epigenome as well as signaling cascades that maintain its self-renewal and pluripotency. In the study, the role of LIF-STAT3 cascade in maintaining self-renewal and pluripotency was investigated. It was shown that inhibition of the cascade led to cell cycle alteration, apoptotic and necrotic cell death. Additionally, RNA-seq data analysis was performed to identify transcripts level for LIF-STAT3 components. These results also suggest that LIF-STAT3 cascade plays an important role in self-renewal in rat pluripotent stem cells.

Full Text

Restricted Access

About the authors

E. A Vaskova

Federal Research Center Institute of Cytology and Genetics, the SB of RAS; E.N. Meshalkin Novosibirsk State Research Institute of Circulation Pathology; Institute of Chemical Biology and Fundamental Medicine

Novosibirsk, Russia

V. V Sherstyuk

Federal Research Center Institute of Cytology and Genetics, the SB of RAS; E.N. Meshalkin Novosibirsk State Research Institute of Circulation Pathology; Institute of Chemical Biology and Fundamental Medicine

Novosibirsk, Russia

S. M Zakian

Federal Research Center Institute of Cytology and Genetics, the SB of RAS; E.N. Meshalkin Novosibirsk State Research Institute of Circulation Pathology; Institute of Chemical Biology and Fundamental Medicine; Novosibirsk State University

Novosibirsk, Russia

References

  1. Evans M.J., Kaufman M.H. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981; 292(5819): 154-6.
  2. Martin G.R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. PNAS USA 1981; 78(12): 7634-8.
  3. Smith A.G. Embryo-derived stem cells: of mice and men. Annu. Rev. Cell Dev. Biol. 2001; 17: 435-62.
  4. Медведев С.П., Шевченко А.И., Закиян С.М. Молекулярные основы поддержания самообновления и плюрипотентности эмбриональных стволовых клеток млекопитающих. Acta Naturae 2010; 2(3): 38-57.
  5. James D., Levine A.J., Besser D. et al. TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development 2005; 132(6): 1273-82.
  6. Vallier L., Alexander M., Pedersen R.A. Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J. Cell Sci. 2005; 118(Pt 19): 4495-509.
  7. Wang G., Zhang H., Zhao Y. et al. Noggin and bFGF cooperate to maintain the pluripotency of human embryonic stem cells in the absence of feeder layers. Biochem. Biophys. Res. Commun. 2005; 330(3): 934-42.
  8. Xiao L., Yuan X., Sharkis S.J. Activin A maintains self-renewal and regulates fibroblast growth factor, Wnt, and bone morphogenic protein pathways in human embryonic stem cells. Stem Cells 2006; 24(6): 1476-86.
  9. Xu R.H., Peck R.M., Li D.S. et al. Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat. Methods 2005; 2(3): 185-90.
  10. Buehr M., Meek S., Blair K. et al. Capture of authentic embryonic stem cells from rat blastocysts. Cell 2008; 135(7): 1287-98.
  11. Li P., Tong C., Mehrian-Shai R. et al. Germline competent embryonic stem cells derived from rat blastocysts. Cell 2008; 135(7): 1299-310.
  12. Vaskova E.A., Medvedev S.P., Sorokina A.E. et al. Transcriptome Characteristics and X-Chromosome Inactivation Status in Cultured Rat Pluripotent Stem Cells. Stem Cells Dev. 2015; 24(24): 2912-24.
  13. Reiterer G., Yen A. Inhibition of the janus kinase family increases extracellular signal-regulated kinase 1/2 phosphorylation and causes endoreduplication. Cancer Res. 2006; 66(18): 9083-9.
  14. Hirai H., Karian P., Kikyo N. Regulation of embryonic stem cell self-renewal and pluripotency by leukaemia inhibitory factor. Biochem. J. 2011; 438(1): 11-23.
  15. Tang Y., Tian X.C. JAK-STAT3 and somatic cell reprogramming. JAKSTAT 2013; 2(4): e24935.
  16. Doble B.W., Woodgett J.R. GSK-3: tricks of the trade for a multi-tasking kinase. J. Cell Sci. 2003; 116(Pt 7): 1175-86.
  17. Casanova E.A., Okoniewski M.J., Cinelli P. Cross-species genome wide expression analysis during pluripotent cell determination in mouse and rat preimplantation embryos. PLoS One 2012; 7(10): e47107.
  18. Hamazaki T., Kehoe S.M., Nakano T. et al. The Grb2/Mek pathway represses Nanog in murine embryonic stem cells. Mol. Cell Biol. 2006; 26(20): 7539-49.
  19. Stavridis M.P., Lunn J.S., Collins B.J. et al. A discrete period of FGF-induced Erk1/2 signalling is required for vertebrate neural specification. Development 2007; 134(16): 2889-94.
  20. Kunath T., Saba-El-Leil M.K., Almousailleakh M. et al. FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment. Development 2007; 134(16): 2895-902.
  21. Hao J., Li T.G., Qi X. et al. WNT/beta-catenin pathway up-regulates Stat3 and converges on LIF to prevent differentiation of mouse embryonic stem cells. Dev. Biol. 2006; 290(1): 81-91.
  22. Немудрый А.А., Валетдинова К.Р., Медведев С.П. и др. Системы редактирования геномов TALEN и CRISPR/Cas - инструменты открытий. Acta Naturae 2014; 6(3): 20-42.
  23. Medvedev S.P., Grigor>eva E.V., Shevchenko A.I. et al. Human induced pluripotent stem cells derived from fetal neural stem cells successfully undergo directed differentiation into cartilage. Stem Cells Dev. 2011; 20(6): 1099-112.
  24. Валетдинова К.Р., Медведев С.П., Закиян С.М. Модельные системы болезней двигательный нейронов - платформа для изучения механизмов патогенеза и поиска терапевтических средств. Acta Naturae 2015; 7(1): 21-38.
  25. Bayzigitov D.R., Medvedev S.P., Dementyeva E.V. et al. Human induced pluripotent stem cell-derived cardiomyocytes afford new opportunities in inherited cardiovascular disease modeling. Cardiol. Res. Pract. 2016; 2016: 3582380.
  26. Медведев С.П., Шевченко А.И., Закиян С.М. Индуцированные плюрипотентные стволовые клетки: проблемы и перспективы применения в заместительной клеточно терапии. Acta Naturae 2010; 2(5): 18-28.
  27. Kisseleva T., Bhattacharya S., Braunstein J. et al. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene 2002; 285(1-2): 1-24.
  28. Lutticken C., Wegenka U.M., Yuan J. et al. Association of transcription factor APRF and protein kinase Jak1 with the interleukin-6 signal transducer gp130. Science 1994; 263(5143): 89-92.
  29. Stahl N., Boulton T.G., Farruggella T. et al. Association and activation of Jak-Tyk kinases by CNTF-LIF-OSM-IL-6 beta receptor components. Science 1994; 263(5143): 92-5.
  30. Babon J.J., Varghese L.N., Nicola N.A. Inhibition of IL-6 family cytokines by SOCS3. Semin. Immunol. 2014; 26(1): 13-9.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies