Tryptophanyl-tRNA synthase gene expression as genetic marker of the athletes’ overtraining



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

In connection with a necessity the development of effective biomarkers of sportsman physical and overtraining (distress) states, the study of a role of triptophanyl-tRNA synthase, TRSase, and corresponding gene in process is of special interest. Preliminary estimate of specificity and level of mRNA expression of TRSase gene is carried out using method 1: scanning of gels with an image of separation of polymerase chain reaction PCR products to detect quantitatively the content of the mRNA and/or cDNA copies compare, in parallel, to DNA quantity markers to compose a calibrating curve. Final estimation of TRSase gene expression is carries out by real time PCR (method 2) using calibrating curve (technique 1) and relative quantitative estimation of a number of specific mRNA copies with reference gene involved (technique 2). The level of TRSase gene expression represents a criterium of organism response, which is adequate to a stress strength (overtraining) It is proposed to detect the overtraining state at sportsmen using registrating an increased TRSase gene expression. In our pilot project, the distress overtraining state is determined as increased level of specific TRSase gene expression in 1,45 fold higher at the samples under the study compare to control samples. The TRSase mRNA expression before training is increased by 1 2-1 6 fold compare to one after training

Full Text

Restricted Access

About the authors

M. K Nurbekov

М.А. Sholokhov Moscow State University for the Humanities, Russian Institute for Advanced Study Moscow, Russia

A. A Elov

М.А. Sholokhov Moscow State University for the Humanities, Russian Institute for Advanced Study Moscow, Russia

A. B Il'in

М.А. Sholokhov Moscow State University for the Humanities, Russian Institute for Advanced Study Moscow, Russia

M. Y Ibragimova

Kazan (Volga region) Federal University Kazan, Russia

R. I Zhdanov

М.А. Sholokhov Moscow State University for the Humanities, Russian Institute for Advanced Study Kazan (Volga region) Federal University Moscow, Russia Kazan, Russia

References

  1. Paracosta E., Gleeson M. Effects of intensity of training and taper on immune function. Rev. Bras. Educ. Fis. Esporte (Sao Paulo) 2013; 27(1): 159-76.
  2. Ahmetov I.I., Fedotovskaya O.N. Current progress in sports genomics. Advances in Clinical Chemistry 2015; http://dx. doi. org/10. 1016/bs. acc. 2015. 03. 003.
  3. Kupriyanov R.V., Zhdanov R.I. Eustress concept: problems and outlooks. World J. Med. Sci. 2014; 11(2): 179-85.
  4. Куприянов Р.В., Жданов Р.И. Стресс и аллостаз: проблемы, перспективы и взаимосвязь. Журн. высшей нервн. деятел. им. И. П. Павлова. 2014; 64(1): 21-31.
  5. Finsterer J. Biomarkers of peripheral muscle fatigue during exercise. BMC Musculoskeletal Disorders 2012; 13: 218-31.
  6. Ceci R., Valls M.R., Duranti G. et. al. Oxidative stress responses to a graded maximal exercise test in older adults following explosivetype resistance training. Redox Biol. 2014; 2: 65-72.
  7. Davydov D.M., Zhdanov R.I., Dvoenosov V.G. et al. Resilence to orthostasis and haemorrhage: A pilot study of common genetic and conditioning factors. Sci. Rep. Nature PG 2015;5: 10703.
  8. Nurbekov M.K., Kisselev L.L., Favorova O.O. et al. Bovine tryptophanyl-tRNA synthetase - a zinc metalloenzyme. Eur. J. Biochem. 1981; 120 (3): 511-17.
  9. Favorova O.O., Zargarova T. A., Rukosuyev V. S. et al. Molecular and cellular studies of tryptophanyl-tRNA synthetases using monoclonal antibodies. Remarkable variations in the content of tryptophanyl-tRNA synthetase in the pancreas of different mammals. Eur. J. Biochem., 1989; 184: 583-88.
  10. Nurbekov M.K., Rasulov M.M., Voronkov M.G. et al. The complex of zinc bis-(2-methylphenoxyacetate) with tris-2(hydroxyethyl) amine as an activator of synthesis of total tryptophanyl-tRNA synthetase. Doklady. Biochemistry and biophysics. 2012; 444: 147-8.
  11. Guo M., Schimmel P., Xiang-Lei Yang X-L. Functional expansion of human tRNA synthetases achieved by structural inventions. FEBS Lett. 2010; 584 (2): 434-42.
  12. Merkulova T., Kovaleva G., Kisselev L. P1,p3-bis(5'-adenosyl) triphosphate (Ap3A) as a substrate and a product of mammalian tryptophanyl-tRNA synthetase. FEBS Lett. 1994; 350: 287-90.
  13. Нурбеков М.К., Елов А.А., Жданов Р.И. Регулируемый эндогенный протеолиз как важный фактор переключения триптофанил-т-РНК-синтетазы от канонической аминоацилирующей активности к неканоническим регулируемым функциям Гены и клетки 2014; IX: 223-9
  14. Ghatak G., Muthukumaran R.B., Nachimuthu S.K. A Simple method of genomic DNA extraction from human samples for PCR-RFLP analysis. J. Biomol. Tech. 2013; 24(4): 224-31.
  15. Протокол выделения препаратов РНК и ДНК с помощью набора наночастиц фирмы Силекс http://www.sileks.com/ru/download/DNA_Isolation_with_MP_ from_Swabs. pdf.
  16. Протокол выделения РНК с помощью набора «Yellow Solve» фирмы Силекс: http://sileks. com/ru/production. php?folder=86.
  17. Протокол ПЦР определения: Hallmarks of an Optimized qPCR Assay
  18. Gleeson M. Biochemical and immunological markers of overtraining. J. Sports Sci. Med. 2002; 2: 31-41.
  19. Park S.G., Schimmel P., Kim S. Aminoacyl tRNA synthetases and their connections to disease. PNAS USA 2008; 105(32): 11043-9.
  20. Sajish M., Schimmel P. A human tRNA synthetase is a potent PARP1-activating effector target for resveratrol. Natiure 2015; 519: 370-3
  21. Yao P., Fox P.L. Aminoacyl-tRNA synthetases in medicine and disease. EMBO Mol Med. 2013; 5(3): 332-43.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies