Decellularized human umbilical arteries retain their mechanical properties

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Tissue engineered vascular grafts can fulfill a clinical need in biological prostheses in reconstructive cardiovascular surgery. Decellularized arteries do not cause immune response, are biocompatible, could be reseeded with recipient cells und thus are attractive scaffolds for vascular tissue engineering. Earlier we developed a decullarization method for human umbilical arteries and proved its effectiveness morphologically. The purpose of this study was to evaluate mechanical properties of the decellurized human umbilical arteries, also after long-term storage. 3 groups of vessels were investigated: I group - native arteries, II group - decellularized arteries, III group - decellularized arteries, stored in phosphate buffered saline for 10 months. Samples were stretched until rupture on the Instron universal testing machine; herewith strain and stress were recorded. The same way the suture retention strength was estimated. Also burst-pressure, that characterized the total strength of the samples, was investigated. Intergroup differences in maximum strain both longitudinal and transverse directions, suture retention strength and burst pressure were not significant. Decellularized human umbilical arteries retain their mechanical properties, and that indirectly confirms extracellular matrix preservation. Thus they are attractive source for small diameter tissue engineered vascular grafts.

About the authors

A. S Nasredinov

Federal Almazov Medical Research Centre, Saint-Petersburg, Russia

A. V Lavreshin

Federal Almazov Medical Research Centre, Saint-Petersburg, Russia

E. A Lebedeva

Saint-Petersburg Electrotechnical University «LETI», Saint-Petersburg, Russia

S. V Anisimov

Federal Almazov Medical Research Centre, Saint-Petersburg, Russia

V. N Vavilov

Federal Almazov Medical Research Centre, Saint-Petersburg, Russia

D. I Kurapeev

Federal Almazov Medical Research Centre, Saint-Petersburg, Russia

References

  1. World Health Organization. World health statistics 2013. Geneva: WHO Press; 2013.
  2. Курьянов П.С. Механизмы гиперплазии интимы и ее значение при хирургическом лечении атеросклероза сонных артерий. Автореферат дисс канд. мед. наук. СПб: 2009: 19.
  3. Teebken O.E., Haverich A. Tissue Engineering of Small Diameter Vascular Grafts. Eur. J. Vasc. Endovasc. Surg. 2002; 23 (6): 475-85.
  4. Van Det R.J., Vriens B. H. R., van der Palen J. et al. Dacron or ePTFE for femoro-popliteal above-knee bypass grafting: short- and long-term results of a multicentre randomised trial. Eur. J. Vasc. Endovasc. Surg. 2009; 37 (4): 457-63.
  5. Prichard H.L., Manson R.J., DiBernardo L. et al. An early study on the mechanisms that allow tissue-engineered vascular grafts to resist intimal hyperplasia. J. Cardiovasc. Transl. Res. 2011; 4 (5): 674-82.
  6. Schmidt C.E., Baier J.M. Acellular vascular tissues: natural biomaterials for tissue repair and tissue engineering. Biomaterials 2000; 21 (22): 2215-31.
  7. Kakisis J.D., Liapis C.D., Breuer C. et al. Artificial blood vessel: the Holy Grail of peripheral vascular surgery. J. Vasc. Surg. 2005; 41 (2): 349-54.
  8. Ma P.X. Biomimetic materials for tissue engineering. Adv. Drug. Deliv. Rev. 2008; 60 (2): 184-98.
  9. Kim B.-S., Park I.-K., Hoshiba T. et al. Design of artificial extracellular matrices for tissue engineering. Prog. Polym. Sci. 2011; 36 (2): 238-68.
  10. Naito Y., Shinoka T., Duncan D. et al. Vascular tissue engineering: Towards the next generation vascular grafts. Adv. Drug Deliv. Rev. 2011; 63: 312-23.
  11. Gilbert T.W., Sellaro T.L., Badylak S.F. Decellularization of tissues and organs. Biomaterials 2006; 27 (19): 3675-83.
  12. Stegemann J.P., Kaszuba S.N., Rowe S.L. Review: advances in vascular tissue engineering using protein-based biomaterials. Tissue Eng. 2007; 13 (11): 2601-13.
  13. Fung Y. C. Biomechanics. Mechanical Properties of Living Tissues. 2nd ed. New York: Springer; 1993.
  14. Dobrin P.B. Mechanical properties of arterises. Physiol. Rev. 1978; 58 (2): 397-460.
  15. Zou Y., Zhang Y. Mechanical Evaluation of Decellularized Porcine Thoracic Aorta. J. Surg. Res. 2012; 175 (2): 359-68.
  16. Liao J., Joyce E.M., Sacks M.S. Effects of decellularization on the mechanical and structural properties of the porcine aortic valve leaflet. Biomaterials. 2008; 29 (8): 1065-74.
  17. McFetridge P.S., Daniel J.W., Bodamyali T. et al. Preparation of porcine carotid arteries for vascular tissue engineering applications. J. Biomed. Mater. Res. A 2004; 70A (2): 224-34.
  18. Chang Y., Hsu C.-K., Wei H.-J. et al. Cell-free xenogenic vascular grafts fixed with glutaraldehyde or genipin: in vitro and in vivo studies. J. Biotechnol. 2005; 120 (2): 207-19.
  19. Dahl S.L.M., Koh J., Prabhakar V. et al. Decellularized native and engineered arterial scaffolds for transplantation. Cell Transplant. 2003; 12 (6): 659-66.
  20. Roy S., Silacci P., Stergiopulos N. Biomechanical properties of decellularized porcine common carotid arteries. Am. J. Physiol. Heart Circ. Physiol. 2005; 289 (4): H1567-76.
  21. Gui L., Muto A., Chan S.A. et al. Development of Decellularized Human Umbilical Arteries as Small-Diameter Vascular Grafts. Tissue Eng. Part A 2009; 15 (9): 2665-76.
  22. Williams C., Liao J., Joyce E.M. et al. Altered structural and mechanical properties in decellularized rabbit carotid arteries. Acta Biomater. 2009; 5 (4): 993-1005.
  23. Волова Т.Г. Материалы для медицины, клеточной и тканевой инженерии. Учебное пособие. Красноярск: ИПК СФУ; 2009.
  24. Dahl S.L.M., Kypson A.P., Lawson J.H. et al. Readily available tissue-engineered vascular grafts. Sci. Transl. Med. 2011; 3 (68): 1-11.
  25. Quint C., Kondo Y., Manson R.J. et al. Decellularized tissue-engineered blood vessel as an arterial conduit. PNAS USA 2011; 108 (22): 9214-9.
  26. Hoenicka M., Jacobs V.R., Huber G. et al. Advantages of human umbilical vein scaffolds derived from cesarean section vs. vaginal delivery for vascular tissue engineering. Biomaterials 2008; 29 (8): 1075-84.
  27. Насрединов А.С., Лаврешин А.В., Анисимов С.В. и др. Децеллюляризованные артерии пуповины человека как основа тканеинженерных кровеносных сосудов малого калибра. Клеточная трансплантология и тканевая инженерия. 2013; VIII (1): 66-71.
  28. Насрединов А.С. Способ децеллюляризации кровеносных сосудов малого калибра. Патент РФ на изобр. №2504334. 28 ноября 2012.
  29. Dardik H., Dardik I. Successful arterial substitution with modified human umbilical vein. Ann. Surg. 1976; 183 (3): 252-8.
  30. Dardik H., Ibrahim I.M., Dardik I. Evaluation of glutaraldehyde-tanned human umbilical cord vein as a vascular prosthesis for bypass to the popliteal, tibial, and peroneal arteries. Surgery 1978; 83 (5): 577-88.
  31. Dardik H., Miller N., Dardik A. et al. A decade of experience with the glutaraldehyde-tanned human umbilical cord vein graft for revascularization of the lower limb. J. Vasc. Surg. 1988; 7 (2): 336-46.
  32. Dardik H., Miller N., Dardik A. et al. Biodegradation and aneurysm formation in umbilical vein grafts. Observations and a realistic strategy. Ann. Surg. 1984; 199 (1): 61-8.
  33. Rondhuis J.J., van Iersel J.G., Taks A.C. The use of autologous graft and human umbilical vein graft in femorocrural bypasses -- a preliminary report. Neth. J. Surg. 1985; 37 (2): 50-3.
  34. Nevelsteen A., D'Hallewin M.A., Deleersnijder J. et al. The human umbilical vein graft in below-knee femoropopliteal and femorotibial surgery: an eight year experience. Ann. Vasc. Surg. 1986; 1 (3): 328-34.
  35. Yeh H.S., Keller J.T., Brackett K.A. et al. Human umbilical artery for microvascular grafting. Experimental study in the rat. J. Neurosurg. 1984; 61 (4): 737-42.
  36. Гмурман В.Е. Теория вероятностей и математическая статистика. Учебное пособие для ВУЗов. 9-е изд., стер. М.: Высшая. школа; 2003.
  37. Макарова Н.В., Трофимец В.Я. Статистика в Excel. Учебное пособие. М.: Финансы и статистика; 2002.
  38. Zhao Y., Zhang S., Zhou J. et al. The development of a tissue-engineered artery using decellularized scaffold and autologous ovine mesenchymal stem cells. Biomaterials 2010; 31 (2): 296-307.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies