Современный взгляд на потенциал регенеративных продуктов жировой ткани в лечении патологий кожных покровов

Обложка


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

На данном этапе развития регенеративной медицины жировая ткань как источник стволовых клеток является вариантом выбора ввиду её доступности, достаточного количества клеток и наиболее безболезненной процедуры забора материала. Высокий интерес к применению данного продукта в лечении рубцов, ран и других дерматологических заболеваний обусловлен продемонстрированными положительными результатами в других областях медицины.

В обзоре представлены данные об эффективности и безопасности использования клеточных и бесклеточных продуктов жировой ткани в лечении различных патологий кожных покровов. Использовали открытые электронные базы данных научной литературы PubMed (MEDLINE), Clinical Trials, eLIBRARY.RU. Поиск данных литературы проведён по следующим ключевым словам: «регенеративная медицина», «стромально-васкулярная фракция», «рубец», «кожа», «дерматология», «наножир», «стволовые клетки жировой ткани», «экзосомы», «липоаспират».

Показаны результаты использования регенеративных продуктов жировой ткани и обосновано их применение в лечении наиболее часто встречающихся и наиболее значимых заболеваний кожных покровов. Использование клеточных и бесклеточных продуктов жировой ткани в дерматологии и хирургии с целью улучшения качества кожных покровов — безопасное и перспективное направление. Для последующего эффективного применения методик необходимы дальнейшие исследования по оценке системного действия, а также разработка стандартизированных протоколов их использования.

Полный текст

Доступ закрыт

Об авторах

Анастасия Игоревна Гребень

Национальный медицинский исследовательский центр реабилитации и курортологии

Автор, ответственный за переписку.
Email: aik-nastya@mail.ru
ORCID iD: 0000-0002-2423-523X

младший научный сотрудник

Россия, Москва

Петр Серафимович Еремин

Национальный медицинский исследовательский центр реабилитации и курортологии

Email: ereminps@gmail.com
ORCID iD: 0000-0001-8832-8470
SPIN-код: 8597-6596

научный сотрудник

Россия, Москва

Елена Юрьевна Костромина

Национальный медицинский исследовательский центр реабилитации и курортологии

Email: bioimed07@hotmail.com
ORCID iD: 0000-0002-9728-7938

к.б.н., старший научный сотрудник

Россия, Москва

Павел Александрович Марков

Национальный медицинский исследовательский центр реабилитации и курортологии

Email: p.a.markov@mail.ru
ORCID iD: 0000-0002-4803-4803

к.б.н., старший научный сотрудник

Россия, Москва

Татьяна Николаевна Гребень

Национальный медицинский исследовательский центр реабилитации и курортологии

Email: greben72@inbox.ru
ORCID iD: 0000-0002-6001-0804

главный врач

Россия, Москва

Список литературы

  1. Proksch E., Brandner J.M., Jensen J.M. The skin: an indispensable barrier // Exp Dermatol. 2008. Vol. 17. P. 1063–1072. doi: 10.1111/j.1600-0625.2008.00786.x
  2. Gaur M., Dobke M., Lunyak V.V. Mesenchymal stem cells from adipose tissue in clinical applications for dermatological indications and skin aging // Int J Mol Sci. 2017. Vol. 18, N 1. P. 208. doi: 10.3390/ijms18010208
  3. Suga H., Sugaya M., Fujita H., et al. TLR4, rather than TLR2, regulates wound healing through TGF-beta and CCL5 expression // J Dermatol Sci. 2014. Vol. 73, N 2. P. 117–124. doi: 10.1016/j.jdermsci.2013.10.009
  4. Vriend L., van der Lei B., Harmsen M.C., van Dongen J.A. Adipose tissue-derived components: from cells to tissue glue to treat dermal damage // Bioengineering (Basel). 2023. Vol. 10, N 3. P. 328. doi: 10.3390/bioengineering10030328
  5. Mazini L., Rochette L., Amine M., Malka G. Regenerative capacity of adipose derived stem cells (adscs), comparison with mesenchymal stem cells (MSCs) // Int J Mol Sci. 2019. Vol. 20, N. 10. P. 2523. doi: 10.3390/ijms20102523
  6. Гребень А.И., Еремин П.С., Бялик Ю.В., и др. Возможности регенеративной медицины и ортобиологических препаратов в лечении заболеваний верхней конечности: обзор литературы // Вестник травматологии и ортопедии им. Н.Н. Приорова. 2023. T. 30, № 1. C. 111–126. doi: 10.17816/vto322818
  7. Tedesco M., Bellei B., Garelli V., et al. Adipose tissue stromal vascular fraction and adipose tissue stromal vascular fraction plus platelet-rich plasma grafting: new regenerative perspectives in genital lichen sclerosus // Dermatol Ther. 2020. Vol. 33, N 6. P. 14277. doi: 10.1111/dth.14277
  8. Bellei B., Migliano E., Picardo M. Research update of adipose tissue-based therapies in regenerative dermatology // Stem Cell Rev Rep. 2022. Vol. 18, N 6. P. 1956–1973. doi: 10.1007/s12015-022-10328-w
  9. Bellei B., Migliano E., Picardo M. Therapeutic potential of adipose tissue-derivatives in modern dermatology // Exp Dermatol. 2022. Vol. 31, N 12. P. 1837–1852. doi: 10.1111/exd.14532
  10. Walocko F.M., Eber A.E., Kirsner R.S., et al. Systematic review of the therapeutic roles of adipose tissue in dermatology // J Am Acad Dermatol. 2018. Vol. 79, N 5. P. 935–944. doi: 10.1016/j.jaad.2018.06.010
  11. Bernardo M.E., Avanzini M.A., Ciccocioppo R., et al. Phenotypical/functional characterization of in vitro-expanded mesenchymal stromal cells from patients with Crohn’s disease // Cytotherapy. 2009. Vol. 11, N 7. P. 825–836. doi: 10.3109/14653240903121260
  12. Barlow S., Brooke G., Chatterjee K., et al. Comparison of human placenta- and bone marrow-derived multipotent mesenchymal stem cells // Stem Cells Dev. 2008. Vol. 17, N 6. P. 1095–1107. doi: 10.1089/scd.2007.0154
  13. Fong C.Y., Subramanian A., Gauthaman K., et al. Human umbilical cord Wharton’s jelly stem cells undergo enhanced chondrogenic differentiation when grown on nanofibrous scaffolds and in a sequential two-stage culture medium environment // Stem Cell Rev. 2012. Vol. 8, N 1. P. 195–209. doi: 10.1007/s12015-011-9289-8
  14. Lataillade J.J., Magne B., Bey E., et al. L’ingénierie cutanée pour le traitement des brûlures graves // Transfus Clin Biol. 2017. Vol. 24, N 3. P. 245–250. doi: 10.1016/j.tracli.2017.06.022
  15. Liang J., Zhang H., Kong W., et al. Safety analysis in patients with autoimmune disease receiving allogeneic mesenchymal stem cells infusion: a long-term retrospective study // Stem Cell Res Ther. 2018. Vol. 9, N 1. P. 312. doi: 10.1186/s13287-018-1053-4
  16. Stepien A., Dabrowska N.L., Maciagowska M., et al. Clinical application of autologous adipose stem cells in patients with multiple sclerosis: preliminary results // Mediat Inflamm. 2016. Vol. 2016. P. 5302120. doi: 10.1155/2016/5302120
  17. Jin E., Chae D.S., Son M., Kim S.W. Angiogenic characteristics of human stromal vascular fraction in ischemic hindlimb // Int J Cardiol. 2017. Vol. 234. P. 38–47. doi: 10.1016/j.ijcard.2017.02.080
  18. Pak J., Lee J.H., Pak N., et al. Cartilage regeneration in humans with adipose tissue-derived stem cells and adipose stromal vascular fraction cells: updated status // Int J Mol Sci. 2018. Vol. 19, N 7. P. 2146. doi: 10.3390/ijms19072146
  19. Assunção-Silva R.C., Mendes-Pinheiro B., Patrício P., et al. Exploiting the impact of the secretome of MSCs isolated from different tissue sources on neuronal differentiation and axonal growth // Biochimie. 2018. Vol. 155. P. 83–91. doi: 10.1016/j.biochi.2018.07.026
  20. Gonzalez-Rey E., Gonzalez M.A., Varela N., et al. Human adipose-derived mesenchymal stem cells reduce inflammatory and T cell responses and induce regulatory T cells in vitro in rheumatoid arthritis // Ann Rheum Dis. 2010. Vol. 69, N 1. P. 241–248. doi: 10.1136/ard.2008.101881
  21. Fang B., Song Y., Liao L., et al. Favorable response to human adipose tissue-derived mesenchymal stem cells in steroid-refractory acute graft-versus-host disease // Transplant Proc. 2007. Vol. 39, N 10. P. 3358–3362. doi: 10.1016/j.transproceed.2007.08.103
  22. Koh Y.J., Koh B.I., Joo H., et al. Stromal vascular fraction from adipose tissue forms profound vascular network through the dynamic reassembly of blood endothelial cells // Arterioscler Thromb Vasc Biol. 2011. P. 31, N 5. P. 1141–1150. doi: 10.1161/ATVBAHA.110.218206
  23. Гатиатулина Е.Р., Мантурова Н.Е., Димов Г.П., и др. Стромально-васкулярная фракция жировой ткани: механизм действия, перспективы и риски местного применения // Пластическая хирургия и эстетическая медицина. 2019. T. 2. C. 43–48. doi: 10.17116/plast.hirurgia201902143
  24. Eming S.A., Krieg T., Davidson J.M. Inflammation in wound repair: molecular and cellular mechanisms // J Investig Dermatol. 2007. Vol. 127, N 3. P. 514–525. doi: 10.1038/sj.jid.5700701
  25. Hosseini M., Brown J., Khosrotehrani K., et al. Skin biomechanics: a potential therapeutic intervention target to reduce scarring // Burns Trauma. 2022. Vol. 10. P. tkac036. doi: 10.1093/burnst/tkac036
  26. Mbiine R., Wayengera M., Ocan M., et al. Adipose-derived stromal vascular fraction (SVF) in scar treatment: a systematic review protocol // Am J Stem Cells. 2022. Vol. 11, N. 4. P. 56–63.
  27. Betarbet U., Blalock T.W. Keloids: a review of etiology, prevention, and treatment // J Clin Aesthet Dermatol. 2020. Vol. 13, N 2. P. 33–43.
  28. Kouotou E.A., Nansseu J.R., Omona Guissana E., et al. Epidemiology and clinical features of keloids in Black Africans: a nested case-control study from Yaoundé, Cameroon // Int J Dermatol. 2019. Vol. 58, N 10. P. 1135–1140. doi: 10.1111/ijd.14610
  29. Palumbo P., Lombardi F., Siragusa G., et al. Methods of isolation, characterization and expansion of human adipose-derived stem cells (ASCs): an overview // Int J Mol Sci. 2018. Vol. 19, N 7. P. 1897. doi: 10.3390/ijms19071897
  30. Wynn T.A., Vannella K.M. Macrophages in tissue repair, regeneration, and fibrosis // Immunity. 2016. Vol. 44, N 3. P. 450–462. doi: 10.1016/j.immuni.2016.02.015
  31. Borovikova A.A., Ziegler M.E., Banyard D.A., et al. Adipose-derived tissue in the treatment of dermal fibrosis: antifibrotic effects of adipose-derived stem cells // Ann Plast Surg. 2018. Vol. 80, N 3. P. 297–307. doi: 10.1097/SAP.0000000000001278
  32. Vanderstichele S., Vranckx J.J. Anti-fibrotic effect of adipose-derived stem cells on fibrotic scars // World J Stem Cells. 2022. Vol. 14, N 2. P. 200–213. doi: 10.4252/wjsc.v14.i2.200
  33. Spiekman M., Przybyt E., Plantinga J.A., et al. Adipose tissue-derived stromal cells inhibit TGF-β1-induced differentiation of human dermal fibroblasts and keloid scar-derived fibroblasts in a paracrine fashion // Plast Reconstr Surg. 2014. Vol. 134, N 4. P. 699–712. doi: 10.1097/PRS.0000000000000504
  34. Fontes T., Brandão I., Negrão R., et al. Autologous fat grafting: harvesting techniques // Ann Med Surg (Lond). 2018. Vol. 36. P. 212–218. doi: 10.1016/j.amsu.2018.11.005
  35. Lee J.W., Park S.H., Lee S.J., et al. Clinical impact of highly condensed stromal vascular fraction injection in surgical management of depressed and contracted scars // Aesthetic Plast Surg. 2018. Vol. 42, N 6. P. 1689–1698. doi: 10.1007/s00266-018-1216-9
  36. Stachura A., Paskal W., Pawlik W., et al. The use of adipose-derived stem cells (ADSCS) and stromal vascular fraction (SVF) in skin scar treatment-a systematic review of clinical studies // J Clin Med. 2021. Vol. 10, N 16. P. 3637. doi: 10.3390/jcm10163637
  37. Krastev T.K., Schop S.J., Hommes J., et al. Autologous fat transfer to treat fibrosis and scar-related conditions: a systematic review and meta-analysis // J Plast Reconstr Aesthet Surg. 2020.Vol. 73, N 11. P. 2033–2048. doi: 10.1016/j.bjps.2020.08.023
  38. Mbiine R., Kayiira A., Wayengera M., et al. Safety and feasibility of autologous adipose-derived stromal vascular fraction in the treatment of keloids: a phase one randomized controlled pilot trial // Am J Stem Cells. 2023. Vol. 12, N 2. P. 23–36.
  39. Wu A.Y., Morrow D.M. Autologous fat transfer with in-situ mediation (AIM): a novel and compliant method of adult mesenchymal stem cell therapy // J Transl Med. 2013. Vol. 11. P. 136. doi: 10.1186/1479-5876-11-136
  40. Bhooshan L.S., Devi M.G., Aniraj R., et al. Autologous emulsified fat injection for rejuvenation of scars: a prospective observational study // Indian J Plast Surg. 2018. Vol. 51, N 3. P. 77–83. doi: 10.4103/ijps.IJPS_86_17
  41. Jan S.N., Bashir M.M., Khan F.A., et al. Unfiltered nanofat injections rejuvenate postburn scars of face // Ann Plast Surg. 2019. Vol. 82, N 1. P. 28–33. doi: 10.1097/SAP.0000000000001631
  42. Gozali M.V., Zhou B. Effective treatments of atrophic acne scars // J Clin Aesthet Dermatol. 2015. Vol. 8, N 5. P. 33–40.
  43. Khansa I., Harrison B., Janis J.E. Evidence-based scar management: how to improve results with technique and technology // Plast Reconstr Surg. 2016. Vol. 138, 3 Suppl. P. 165–178. doi: 10.1097/PRS.0000000000002647
  44. Gentile P., Sterodimas A., Pizzicannella J., et al. Systematic review: allogenic use of stromal vascular fraction (SVF) and decellularized extracellular matrices (ECM) as advanced therapy medicinal products (ATMP) in tissue regeneration // Int J Mol Sci. 2020. Vol. 21, N 14. P. 4982. doi: 10.3390/ijms21144982
  45. Gentile P., Garcovich S. Systematic review: adipose-derived mesenchymal stem cells, platelet-rich plasma and biomaterials as new regenerative strategies in chronic skin wounds and soft tissue defects // Int J Mol Sci. 2021. Vol. 22, N 4. P. 1538. doi: 10.3390/ijms22041538
  46. Cannarozzo G., Silvestri M., Tamburi F., et al. A new 675-nm laser device in the treatment of acne scars: an observational study // Lasers Med Sci. 2021. Vol. 36, N 1. P. 227–231. doi: 10.1007/s10103-020-03063-6
  47. Behrangi E., Moradi S., Ghassemi M., et al. The investigation of the efficacy and safety of stromal vascular fraction in the treatment of nanofat-treated acne scar: a randomized blinded controlled clinical trial // Stem Cell Res Ther. 2022. Vol. 13, N 1. P. 298. doi: 10.1186/s13287-022-02957-2
  48. Gentile P. New strategies in plastic surgery: autologous adipose-derived mesenchymal stem cells contained in fat grafting improves symptomatic scars // Front Biosci (Landmark Ed). 2021. Vol. 26, N 8. P. 255–257. doi: 10.52586/4940
  49. Gentile P., Sterodimas A., Calabrese C., et al. Systematic review: advances of fat tissue engineering as bioactive scaffold, bioactive material, and source for adipose-derived mesenchymal stem cells in wound and scar treatment // Stem Cell Res Ther. 2021. Vol. 12, N 1. P. 318. doi: 10.1186/s13287-021-02397-4
  50. Shan X., Choi J.H., Kim K.J., et al. Adipose stem cells with conditioned media for treatment of acne vulgaris scar // Tissue Eng Regen Med. 2018. Vol. 15, N 1. P. 49–61. doi: 10.1007/s13770-017-0105-7
  51. Tenna S., Cogliandro A., Barone M., et al. Comparative study using autologous fat grafts plus platelet-rich plasma with or without fractional CO(2) laser resurfacing in treatment of acne scars: analysis of outcomes and satisfaction with FACE-Q // Aesthetic Plast Surg. 2017. Vol. 41, N 3. P. 661–666. doi: 10.1007/s00266-017-0777-3
  52. Gu Z., Li Y., Li H. Use of condensed nanofat combined with fat grafts to treat atrophic scars // JAMA Facial Plast Surg. 2018. Vol. 20, N 2. P. 128–135. doi: 10.1001/jamafacial.2017.1329
  53. Rice J.B., Desai U., Cummings A.K., et al. Burden of diabetic foot ulcers for medicare and private insurers // Diabetes Care. 2014. Vol. 37, N 3. P. 651–658. doi: 10.2337/dc13-2176
  54. Prompers L., Schaper N., Apelqvist J., et al. Prediction of outcome in individuals with diabetic foot ulcers: focus on the differences between individuals with and without peripheral arterial disease. The EURODIALE Study // Diabetolgia. 2008. Vol. 51, N 5. P. 747–755. doi: 10.1007/s00125-008-0940-0
  55. Zhang H.Z., Chae D.S., Kim S.W. ASC and SVF cells synergistically induce neovascularization in ischemic hindlimb following cotransplantation // Int J Mol Sci. 2021. Vol. 23, N 1. P. 185. doi: 10.3390/ijms23010185
  56. Carstens M.H., Quintana F.J., Calderwood S.T., et al. Treatment of chronic diabetic foot ulcers with adipose-derived stromal vascular fraction cell injections: safety and evidence of efficacy at 1 year // Stem Cells Transl Med. 2021. Vol. 10, N 8. P. 1138–1147. doi: 10.1002/sctm.20-0497
  57. Carstens M.H., Gómez A., Cortés R., et al. Non-reconstructable peripheral vascular disease of the lower extremity in ten patients treated with adipose-derived stromal vascular fraction cells // Stem Cell Res. 2017. Vol. 18. P. 14–21. doi: 10.1016/j.scr.2016.12.001
  58. Carstens M.H., Zelaya M., Calero D., et al. Adipose-derived stromal vascular fraction (SVF) cells for the treatment of non-reconstructable peripheral vascular disease in patients with critical limb ischemia: a 6-year follow-up showing durable effects // Stem Cell Res. 2020. Vol. 49. P. 102071. doi: 10.1016/j.scr.2020.102071
  59. Han S.K., Kim H.R., Kim W.K. The treatment of diabetic ulcers with unprocessed lipoaspirate cells: a pilot study // Wound Repair Regen. 2010. Vol. 18, N 4. P. 342–348. doi: 10.1111/j.1524-475X.2010.00593.x
  60. Guo J., Dardik A., Fang K., et al. Meta-analysis on the treatment of diabetic foot ulcers with autologous stem cells // Stem Cell Res Ther. 2017. Vol. 8, N 1. P. 228–238. doi: 10.1186/s13287-017-0683-2
  61. Kano M.R., Morishita Y., Iwata C., Iwasaka S., et al. VEGF-A and FGF-2 synergistically promote neoangiogenesis through enhancement of endogenous PDGF-B-PDGFRbeta signaling // J Cell Sci. 2005. Vol. 118 (Pt 16). P. 3759–3768. doi: 10.1242/jcs.02483
  62. Holm J.S., Toyserkani N.M., Sorensen J.A. Adipose-derived stem cells for treatment of chronic ulcers: current status // Stem Cell Res Ther. 2018. Vol. 9, N 1. P. 142. doi: 10.1186/s13287-018-0887-0
  63. Meuli M., Hartmann-Fritsch F., Hüging M., et al. A cultured autologous dermo-epidermal skin substitute for full-thickness skin defects: a phase I, open, prospective clinical trial in children // Plast Reconstr Surg. 2019. Vol. 144, N 1. P. 188–198. doi: 10.1097/PRS.0000000000005746
  64. Hyldig K., Riis S., Pennisi C.P., et al. Implications of extracellular matrix production by adipose tissue-derived stem cells for development of wound healing therapies // Int J Mol Sci. 2017. Vol. 18, N 6. P. 1167. doi: 10.3390/ijms18061167
  65. Hu M.S., Borrelli M.R., Lorenz H.P., et al. Mesenchymal stromal cells and cutaneous wound healing: a comprehensive review of the background, role, and therapeutic potential // Stem Cells Int. 2018. Vol. 2018. P. 6901983. doi: 10.1155/2018/6901983
  66. van Abeelen M.H., Ulrich D.J. Lipofilling of skin contour defects in a leaking stoma: a new method to solve a difficult problem // J Plast Reconstr Aesthet Surg. 2015. Vol. 68, N 1. P. 139–140. doi: 10.1016/j.bjps.2014.08.073
  67. Bene M.D., Pozzi M.R., Rovati L., et al. Autologous fat grafting for scleroderma-induced digital ulcers. An effective technique in patients with systemic sclerosis // Handchir Mikrochir Plast Chir. 2014 .Vol. 46, N 4. P. 242–247. doi: 10.1055/s-0034-1376970
  68. Stasch T., Hoehne J., Huynh T., et al. Debridement and autologous lipotransfer for chronic ulceration of the diabetic foot and lower limb improves wound healing // Plast Reconstr Surg. 2015. Vol. 136, N 6. P. 1357–1366. doi: 10.1097/PRS.0000000000001819
  69. van Dongen J.A., Boxtel J.V., Uguten M., et al. Tissue stromal vascular fraction improves early scar healing: a prospective randomized multicenter clinical trial // Aesthet Surg J. 2021. Vol. 42, N 7. P. 477–488. doi: 10.1093/asj/sjab431
  70. Zhou Y., Zhang X.L., Lu S.T., et al. Human adipose-derived mesenchymal stem cells-derived exosomes encapsulated in pluronic F127 hydrogel promote wound healing and regeneration // Stem Cell Res Ther. 2022. Vol. 13, N 1. P. 407. doi: 10.1186/s13287-022-02980-3
  71. Vanikar A.V., Trivedi H.L., Kumar A., et al. Co-infusion of donor adipose tissue-derived mesenchymal and hematopoietic stem cells helps safe minimization of immunosuppression in renal transplantation — single center experience // Ren Fail. 2014. Vol. 36, N 9. P. 1376–1384. doi: 10.3109/0886022X.2014.950931
  72. Nesteruk J., Voronina N., Kundt G., et al. Stem cell registry programme for patients with ischemic cardiomyopathy undergoing coronary artery bypass grafting: what benefits does it derive? // ESC Heart Fail. 2017. Vol. 4, N 2. P. 105–111. doi: 10.1002/ehf2.12132
  73. Castillo-Cardiel G., López-Echaury A.C., Saucedo-Ortiz J.A., et al. Bone regeneration in mandibular fractures after the application of autologous mesenchymal stem cells, a randomized clinical trial // Dent Traumatol. 2017. Vol. 33, N 1. P. 38–44. doi: 10.1111/edt.12303
  74. Gao L., Zhang Y., Hu B., et al. Phase II multicenter, randomized, double-blind controlled study of efficacy and safety of umbilical cord-derived mesenchymal stromal cells in the prophylaxis of chronic graft-versus-host disease after HLA-haploidentical stem-cell transplantation // J Clin Oncol. 2016. Vol. 34, N 24. P. 2843–2850. doi: 10.1200/JCO.2015.65.3642
  75. Houtgraaf J.H., de Jong R., Kazemi K., et al. Intracoronary infusion of allogeneic mesenchymal precursor cells directly after experimental acute myocardial infarction reduces infarct size, abrogates adverse remodeling, and improves cardiac function // Circ Res. 2013. Vol. 113, N 2. P. 153–166. doi: 10.1161/CIRCRESAHA.112.300730
  76. Gutiérrez Santamaría J., Masiá Gridilla J., Pamias Romero J., et al. Fat grafting is a feasible technique for the sequelae of head and neck cancer treatment // J Craniomaxillofac Surg. 2017. Vol. 45, N 1. P. 93–98. doi: 10.1016/j.jcms.2016.10.019
  77. Debald M., Pech T., Kaiser C., et al. Lipofilling effects after breast cancer surgery in post-radiation patients: an analysis of results and algorithm proposal // Eur J Plast Surg. 2017. Vol. 40, N 5. P. 447–454. doi: 10.1007/s00238-017-1311-1
  78. Dreno B., Amici J.M., Demessant-Flavigny A.L., et al. The impact of acne, atopic dermatitis, skin toxicities and scars on quality of life and the importance of a holistic treatment approach // Clin Cosmet Investig Dermatol. 2021. Vol. 14. P. 623–632. doi: 10.2147/CCID.S315846
  79. Clayton R.W., Göbel K., Niessen C.M., et al. Homeostasis of the sebaceous gland and mechanisms of acne pathogenesis // Br J Dermatol. 2019. Vol. 181, N 4. P. 677–690. doi: 10.1111/bjd.17981
  80. Zhao H., Hao L., Chen X., et al. An efficacy study of a new radical treatment for acne vulgaris using fat injection // Aesthet Surg J. 2021. Vol. 41, N 8. P. 1061–1072. doi: 10.1093/asj/sjab162
  81. Nilforoushzadeh M.A., Heidari-Kharaji M., Alavi S., et al. Transplantation of autologous fat, stromal vascular fraction (SVF) cell, and platelet-rich plasma (PRP) for cell therapy of atrophic acne scars: clinical evaluation and biometric assessment // J Cosmet Dermatol. 2022. Vol. 21, N 5. P. 2089–2098. doi: 10.1111/jocd.14333
  82. Kwon H.H., Yang S.H., Lee J., et al. Combination treatment with human adipose tissue stem cell-derived exosomes and fractional CO2 laser for acne scars: a 12-week prospective, double-blind, randomized, split-face study // Acta Derm Venereol. 2020. Vol. 100, N 18. P. adv00310. doi: 10.2340/00015555-3666
  83. Kurokawa I., Layton A.M., Ogawa R. Updated treatment for acne: targeted therapy based on pathogenesis // Dermatol Ther (Heidelb). 2021. Vol. 11, N 4. P. 1129–1139. doi: 10.1007/s13555-021-00552-6
  84. Ferrari D., Casciano F., Secchiero P., Reali E. Purinergic signaling and inflammasome activation in psoriasis pathogenesis // Int J Mol Sci. 2021. Vol. 22, N 17. P. 9449. doi: 10.3390/ijms22179449
  85. Mizuguchi S., Gotoh K., Nakashima Y., et al. Mitochondrial reactive oxygen species are essential for the development of psoriatic inflammation // Front Immunol. 2021. Vol. 12. P. 714897. doi: 10.3389/fimmu.2021.714897
  86. Shi F., Guo L.C., Zhu W.D., et al. Human adipose tissue-derived MSCs improve psoriasis-like skin inflammation in mice by negatively regulating ROS // J Dermatolog Treat. 2022. Vol. 33, N 4. P. 2129–2136. doi: 10.1080/09546634.2021.1925622
  87. Xu F., Fei Z., Dai H., et al. Mesenchymal stem cell-derived extracellular vesicles with high PD-L1 expression for autoimmune diseases treatment // Adv Mater. 2022. Vol. 34, N 1. P. e2106265. doi: 10.1002/adma.202106265
  88. Chen H., Niu J.W., Ning H.M., et al. Treatment of psoriasis with mesenchymal stem cells // Am J Med. 2016. Vol. 129, N 3. P. 13–14. doi: 10.1016/j.amjmed.2015.11.001
  89. De Jesus M.M., Santiago J.S., Trinidad C.V., et al. Autologous adipose-derived mesenchymal stromal cells for the treatment of psoriasis vulgaris and psoriatic arthritis: a case report // Cell Transplant. 2016. Vol. 25, N 11. P. 2063–2069. doi: 10.3727/096368916X691998
  90. Comella K., Parlo M., Daly R., Dominessy K. First-in-man intravenous implantation of stromal vascular fraction in psoriasis: a case study // Int Med Case Rep J. 2018. Vol. 11. P. 59–64. doi: 10.2147/IMCRJ.S163612
  91. Capucci S., Hahn-Pedersen J., Vilsbøll A., Kragh N. Impact of atopic dermatitis and chronic hand eczema on quality of life compared with other chronic diseases // Dermatitis. 2020. Vol. 31, N 3. P. 178–184. doi: 10.1097/DER.0000000000000598
  92. Hofmann M.A., Fluhr J.W., Ruwwe-Glösenkamp C., et al. Role of IL-17 in atopy — a systematic review // Clin Transl Allergy. 2021. Vol. 11, N 6. P. 12047. doi: 10.1002/clt2.12047
  93. Ring J., Alomar A., Bieber T., et al. Guidelines for treatment of atopic eczema (atopic dermatitis) part I // J Eur Acad Dermatol Venereol. 2012. Vol. 26, N 8. P. 1045–1060. doi: 10.1111/j.1468-3083.2012.04635.x
  94. Ryu B., Baek J., Kim H., et al. Anti-inflammatory effects of M-MSCs in DNCB-induced atopic dermatitis mice // Biomedicines. 2020. Vol. 8, N 10. P. 439. doi: 10.3390/biomedicines8100439
  95. Park A., Park H., Yoon J., et al. Priming with Toll-like receptor 3 agonist or interferon-gamma enhances the therapeutic effects of human mesenchymal stem cells in a murine model of atopic dermatitis // Stem Cell Res Ther. 2019. Vol. 10, N 1. P. 66. doi: 10.1186/s13287-019-1164-6
  96. Jung H., Son G.M., Lee J.J., Park H.S. Therapeutic effects of tonsil-derived mesenchymal stem cells in an atopic dermatitis mouse model // In Vivo. 2021. Vol. 35, N 2. P. 845–857. doi: 10.21873/invivo.12325
  97. Shin K.O., Ha D.H., Kim J.O., et al. Exosomes from human adipose tissue-derived mesenchymal stem cells promote epidermal barrier repair by inducing de novo synthesis of ceramides in atopic dermatitis // Cells. 2020. Vol. 9, N 3. P. 680. doi: 10.3390/cells9030680
  98. Ra J.C., Kang S.K., Shin I.S., et al. Stem cell treatment for patients with autoimmune disease by systemic infusion of culture-expanded autologous adipose tissue derived mesenchymal stem cells // J Transl Med. 2011. Vol. 9. P. 181. doi: 10.1186/1479-5876-9-181
  99. Kim H.S., Lee J.H., Roh K.H., et al. Clinical trial of human umbilical cord blood-derived stem cells for the treatment of moderate-to-severe atopic dermatitis: phase I/IIa studies // Stem Cells. 2017. Vol. 35, N 1. P. 248–255. doi: 10.1002/stem.2401
  100. fda.gov [Internet]. Food and Drug Administration [дата обращения: 08.08.2023]. Доступ по ссылке: https://www.fda.gov/consumers/consumer-updates/fda-warns-about-stem-cell-therapies

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Эко-Вектор, 2023



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах