The modern view on adipose tissue regenerative products potential in skin pathologies treatment

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

At this stage of regenerative medicine development, adipose tissue as a source of stem cells is the choice option due to its availability, a sufficient number of cells and the most painless sampling procedure. The high interest in this product use in scars, wounds and other dermatological diseases treatment is driven by demonstrated positive results in other medical fields.

This review presents data on the efficacy and safety of cellular and acellular adipose tissue products use in various skin pathologies treatment. Scientific literature open electronic databases PubMed (MEDLINE), Clinical Trials, and eLIBRARY.RU were used. The literature data search was carried out using the keywords: “regenerative medicine”, “SVF”, “scar”, “skin”, “dermatology”, “nanofat”, “ADSC”, “exosomes”, “lipoaspirat”.

The article presents the results and the rationale of adipose tissue regenerative products use in the most common and most significant skin diseases treatment. Cellular and acellular adipose tissue products use in dermatology and surgery is a safe and promising direction to improve skin quality. For the subsequent effective techniques application further research is needed to assess the systemic effect, as well as the development of standardized protocols for their use.

Full Text

Restricted Access

About the authors

Anastasiya I. Greben

National Medical Research Centre for Rehabilitation and Balneology

Author for correspondence.
Email: aik-nastya@mail.ru
ORCID iD: 0000-0002-2423-523X

Junior Research Associate

Russian Federation, Moscow

Peter S. Eremin

National Medical Research Centre for Rehabilitation and Balneology

Email: ereminps@gmail.com
ORCID iD: 0000-0001-8832-8470
SPIN-code: 8597-6596

Research Associate

Russian Federation, Moscow

Elena Yu. Kostromina

National Medical Research Centre for Rehabilitation and Balneology

Email: bioimed07@hotmail.com
ORCID iD: 0000-0002-9728-7938

Cand. Sci. (Biol.), Senior Research Associate

Russian Federation, Moscow

Pavel A. Markov

National Medical Research Centre for Rehabilitation and Balneology

Email: p.a.markov@mail.ru
ORCID iD: 0000-0002-4803-4803

Cand. Sci. (Biol.), Senior Research Associate

Russian Federation, Moscow

Tatiana N. Greben

National Medical Research Centre for Rehabilitation and Balneology

Email: greben72@inbox.ru
ORCID iD: 0000-0002-6001-0804

MD

Russian Federation, Moscow

References

  1. Proksch E, Brandner JM, Jensen JM. The skin: an indispensable barrier. Exp Dermatol. 2008;17:1063–1072. doi: 10.1111/j.1600-0625.2008.00786.x
  2. Gaur M, Dobke M, Lunyak VV. Mesenchymal stem cells from adipose tissue in clinical applications for dermatological indications and skin aging. Int J Mol Sci. 2017;18(1):208. doi: 10.3390/ijms18010208
  3. Suga H, Sugaya M, Fujita H, et al. TLR4, rather than TLR2, regulates wound healing through TGF-beta and CCL5 expression. J Dermatol Sci. 2014;73(2):117–124. doi: 10.1016/j.jdermsci.2013.10.009
  4. Vriend L, van der Lei B, Harmsen MC, van Dongen JA. Adipose tissue-derived components: from cells to tissue glue to treat dermal damage. Bioengineering (Basel). 2023;10(3):328. doi: 10.3390/bioengineering10030328
  5. Mazini L, Rochette L, Amine M, Malka G. Regenerative capacity of adipose derived stem cells (adscs), comparison with mesenchymal stem cells (MSCs). Int J Mol Sci. 2019;20(10):2523. doi: 10.3390/ijms20102523
  6. Greben AI, Eremin PS, Byalik YV, et al. Regenerative medicine and orthobiological drugs possibilities in upper limb diseases treatment: literature review. N.N. Priorov Journal of Traumatology and Orthopedics. 2023;30(1):111–126. (In Russ). doi: 10.17816/vto322818
  7. Tedesco M, Bellei B, Garelli V, et al. Adipose tissue stromal vascular fraction and adipose tissue stromal vascular fraction plus platelet-rich plasma grafting: new regenerative perspectives in genital lichen sclerosus. Dermatol Ther. 2020;33(6):e14277. doi: 10.1111/dth.14277
  8. Bellei B, Migliano E, Picardo M. Research update of adipose tissue-based therapies in regenerative dermatology. Stem Cell Rev Rep. 2022;18(6):1956–1973. doi: 10.1007/s12015-022-10328-w
  9. Bellei B, Migliano E, Picardo M. Therapeutic potential of adipose tissue-derivatives in modern dermatology. Exp Dermatol. 2022;31(12):1837–1852. doi: 10.1111/exd.14532
  10. Walocko FM, Eber AE, Kirsner RS, et al. Systematic review of the therapeutic roles of adipose tissue in dermatology. J Am Acad Dermatol. 2018;79(5):935–944. doi: 10.1016/j.jaad.2018.06.010
  11. Bernardo ME, Avanzini MA, Ciccocioppo R, et al. Phenotypical/functional characterization of in vitro-expanded mesenchymal stromal cells from patients with Crohn’s disease. Cytotherapy. 2009;11(7):825–836. doi: 10.3109/14653240903121260
  12. Barlow S, Brooke G, Chatterjee K, et al. Comparison of human placenta- and bone marrow-derived multipotent mesenchymal stem cells. Stem Cells Dev. 2008;17(6):1095–1107. doi: 10.1089/scd.2007.0154
  13. Fong CY, Subramanian A, Gauthaman K, et al. Human umbilical cord Wharton’s jelly stem cells undergo enhanced chondrogenic differentiation when grown on nanofibrous scaffolds and in a sequential two-stage culture medium environment. Stem Cell Rev. 2012;8(1):195–209. doi: 10.1007/s12015-011-9289-8
  14. Lataillade JJ, Magne B, Bey E, et al. Skin engineering for severe burns. Transfus Clin Biol. 2017;24(3):245–250. (In French). doi: 10.1016/j.tracli.2017.06.022
  15. Liang J, Zhang H, Kong W, et al. Safety analysis in patients with autoimmune disease receiving allogeneic mesenchymal stem cells infusion: a long-term retrospective study. Stem Cell Res Ther. 2018;9(1):312. doi: 10.1186/s13287-018-1053-4
  16. Stepien A, Dabrowska NL, Maciagowska M, et al. Clinical application of autologous adipose stem cells in patients with multiple sclerosis: preliminary results. Mediat Inflamm. 2016;2016:5302120. doi: 10.1155/2016/5302120
  17. Jin E, Chae DS, Son M, Kim S. Angiogenic characteristics of human stromal vascular fraction in ischemic hindlimb. Int J Cardiol. 2017;234:38–47. doi: 10.1016/j.ijcard.2017.02.080
  18. Pak J, Lee JH, Pak N, et al. Cartilage regeneration in humans with adipose tissue-derived stem cells and adipose stromal vascular fraction cells: updated status. Int J Mol Sci. 2018;19(7):2146. doi: 10.3390/ijms19072146
  19. Assunção-Silva RC, Mendes-Pinheiro B, Patrício P, et al. Exploiting the impact of the secretome of MSCs isolated from different tissue sources on neuronal differentiation and axonal growth. Biochimie. 2018;155:83–91. doi: 10.1016/j.biochi.2018.07.026
  20. Gonzalez-Rey E, Gonzalez MA, Varela N, et al. Human adipose-derived mesenchymal stem cells reduce inflammatory and T cell responses and induce regulatory T cells in vitro in rheumatoid arthritis. Ann Rheum Dis. 2010;69(1):241–248. doi: 10.1136/ard.2008.101881
  21. Fang B, Song Y, Liao L, et al. Favorable response to human adipose tissue-derived mesenchymal stem cells in steroid-refractory acute graft-versus-host disease. Transplant Proc. 2007;39(10):3358–3362. doi: 10.1016/j.transproceed.2007.08.103
  22. Koh YJ, Koh BI, Joo H, et al. Stromal vascular fraction from adipose tissue forms profound vascular network through the dynamic reassembly of blood endothelial cells. Arterioscler Thromb Vasc Biol. 2011;31(5):1141–1150. doi: 10.1161/ATVBAHA.110.218206
  23. Gatiatulina ER, Manturova NE, Dimov GP, et al. Adipose-derived stromal vascular fraction: mechanism of action, prospects and risks of local application. Plastic Surgery and Aesthetic Medicine. 2019;(2):43–48. (In Russ). doi: 10.17116/plast.hirurgia201902143
  24. Eming SA, Krieg T, Davidson JM. Inflammation in wound repair: molecular and cellular mechanisms. J Investig Dermatol. 2007;127(3):514–525. doi: 10.1038/sj.jid.5700701
  25. Hosseini M, Brown J, Khosrotehrani K, et al. Skin biomechanics: a potential therapeutic intervention target to reduce scarring. Burns Trauma. 2022;10:tkac036. doi: 10.1093/burnst/tkac036
  26. Mbiine R, Wayengera M, Ocan M, et al. Adipose-derived stromal vascular fraction (SVF) in scar treatment: a systematic review protocol. Am J Stem Cells. 2022;11(4):56–63.
  27. Betarbet U, Blalock TW. Keloids: a review of etiology, prevention, and treatment. J Clin Aesthet Dermatol. 2020;13(2):33–43.
  28. Kouotou EA, Nansseu JR, Omona Guissana E, et al. Epidemiology and clinical features of keloids in Black Africans: a nested case-control study from Yaoundé, Cameroon. Int J Dermatol. 2019;58(10):1135–1140. doi: 10.1111/ijd.14610
  29. Palumbo P, Lombardi F, Siragusa G, et al. Methods of isolation, characterization and expansion of human adipose-derived stem cells (ASCs): an overview. Int J Mol Sci. 2018;19(7):1897. doi: 10.3390/ijms19071897
  30. Wynn TA, Vannella KM. Macrophages in tissue repair, regeneration, and fibrosis. Immunity. 2016;44(3):450–462. doi: 10.1016/j.immuni.2016.02.015
  31. Borovikova AA, Ziegler ME, Banyard DA, et al. Adipose-derived tissue in the treatment of dermal fibrosis: antifibrotic effects of adipose-derived stem cells. Ann Plast Surg. 2018;80(3):297–307. doi: 10.1097/SAP.0000000000001278
  32. Vanderstichele S, Vranckx JJ. Anti-fibrotic effect of adipose-derived stem cells on fibrotic scars. World J Stem Cells. 2022;14(2):200–213. doi: 10.4252/wjsc.v14.i2.200
  33. Spiekman M, Przybyt E, Plantinga JA, et al. Adipose tissue-derived stromal cells inhibit TGF-β1-induced differentiation of human dermal fibroblasts and keloid scar-derived fibroblasts in a paracrine fashion. Plast Reconstr Surg. 2014;134(4):699–712. doi: 10.1097/PRS.0000000000000504
  34. Fontes T, Brandão I, Negrão R, et al. Autologous fat grafting: harvesting techniques. Ann Med Surg (Lond). 2018;36:212–218. doi: 10.1016/j.amsu.2018.11.005
  35. Lee JW, Park SH, Lee SJ, et al. Clinical impact of highly condensed stromal vascular fraction injection in surgical management of depressed and contracted scars. Aesthetic Plast Surg. 2018;42(6):1689–1698. doi: 10.1007/s00266-018-1216-9
  36. Stachura A, Paskal W, Pawlik W, et al. The use of adipose-derived stem cells (ADSCs) and stromal vascular fraction (SVF) in skin scar treatment — a systematic review of clinical studies. J Clin Med. 2021;10(16):3637. doi: 10.3390/jcm10163637
  37. Krastev TK, Schop SJ, Hommes J, et al. Autologous fat transfer to treat fibrosis and scar-related conditions: a systematic review and meta-analysis. J Plast Reconstr Aesthet Surg. 2020;73(11):2033–2048. doi: 10.1016/j.bjps.2020.08.023
  38. Mbiine R, Kayiira A, Wayengera M, et al. Safety and feasibility of autologous adipose-derived stromal vascular fraction in the treatment of keloids: a phase one randomized controlled pilot trial. Am J Stem Cells. 2023;12(2):23–36.
  39. Wu AY, Morrow DM. Autologous fat transfer with in-situ mediation (AIM): a novel and compliant method of adult mesenchymal stem cell therapy. J Transl Med. 2013;11:136. doi: 10.1186/1479-5876-11-136
  40. Bhooshan LS, Devi MG, Aniraj R, et al. Autologous emulsified fat injection for rejuvenation of scars: a prospective observational study. Indian J Plast Surg. 2018;51(1):77–83. doi: 10.4103/ijps.IJPS_86_17
  41. Jan SN, Bashir MM, Khan FA, et al. Unfiltered nanofat injections rejuvenate postburn scars of face. Ann Plast Surg. 2019;82(1):28–33. doi: 10.1097/SAP.0000000000001631
  42. Gozali MV, Zhou B. Effective treatments of atrophic acne scars. J Clin Aesthet Dermatol. 2015;8(5):33–40.
  43. Khansa I, Harrison B, Janis JE. Evidence-based scar management: how to improve results with technique and technology. Plast Reconstr Surg. 2016;138(3 suppl.):165–178. doi: 10.1097/PRS.0000000000002647
  44. Gentile P, Sterodimas A, Pizzicannella J, et al. Systematic review: allogenic use of stromal vascular fraction (SVF) and decellularized extracellular matrices (ECM) as advanced therapy medicinal products (ATMP) in tissue regeneration. Int J Mol Sci. 2020;21(14):4982. doi: 10.3390/ijms21144982
  45. Gentile P, Garcovich S. Systematic review: adipose-derived mesenchymal stem cells, platelet-rich plasma and biomaterials as new regenerative strategies in chronic skin wounds and soft tissue defects. Int J Mol Sci. 2021;22(4):1538. doi: 10.3390/ijms22041538
  46. Cannarozzo G, Silvestri M, Tamburi F, et al. A new 675-nm laser device in the treatment of acne scars: an observational study. Lasers Med Sci. 2021;36(1):227–231. doi: 10.1007/s10103-020-03063-6
  47. Behrangi E, Moradi S, Ghassemi M, et al. The investigation of the efficacy and safety of stromal vascular fraction in the treatment of nanofat-treated acne scar: a randomized blinded controlled clinical trial. Stem Cell Res Ther. 2022;13(1):298. doi: 10.1186/s13287-022-02957-2
  48. Gentile P. New strategies in plastic surgery: autologous adipose-derived mesenchymal stem cells contained in fat grafting improves symptomatic scars. Front Biosci (Landmark Ed). 2021;26(8):255–257. doi: 10.52586/4940
  49. Gentile P, Sterodimas A, Calabrese C, et al. Systematic review: advances of fat tissue engineering as bioactive scaffold, bioactive material, and source for adipose-derived mesenchymal stem cells in wound and scar treatment. Stem Cell Res Ther. 2021;12(1):318. doi: 10.1186/s13287-021-02397-4
  50. Shan X, Choi JH, Kim KJ, et al. Adipose stem cells with conditioned media for treatment of acne vulgaris scar. Tissue Eng Regen Med. 2018;15(1):49–61. doi: 10.1007/s13770-017-0105-7
  51. Tenna S, Cogliandro A, Barone M, et al. Comparative study using autologous fat grafts plus platelet-rich plasma with or without fractional CO(2) laser resurfacing in treatment of acne scars: analysis of outcomes and satisfaction with FACE-Q. Aesthetic Plast Surg. 2017;41(3):661–666. doi: 10.1007/s00266-017-0777-3
  52. Gu Z, Li Y, Li H. Use of condensed nanofat combined with fat grafts to treat atrophic scars. JAMA Facial Plast Surg. 2018;20(2):128–135. doi: 10.1001/jamafacial.2017.1329
  53. Rice JB, Desai U, Cummings AK, et al. Burden of diabetic foot ulcers for medicare and private insurers. Diabetes Care. 2014;37(3):651–658. doi: 10.2337/dc13-2176
  54. Prompers L, Schaper N, Apelqvist J, et al. Prediction of outcome in individuals with diabetic foot ulcers: focus on the differences between individuals with and without peripheral arterial disease. The EURODIALE Study. Diabetolgia. 2008;51(5):747–755. doi: 10.1007/s00125-008-0940-0
  55. Zhang HZ, Chae DS, Kim SW. ASC and SVF cells synergistically induce neovascularization in ischemic hindlimb following cotransplantation. Int J Mol Sci. 2021;23(1):185. doi: 10.3390/ijms23010185
  56. Carstens MH, Quintana FJ, Calderwood ST, et al. Treatment of chronic diabetic foot ulcers with adipose-derived stromal vascular fraction cell injections: safety and evidence of efficacy at 1 year. Stem Cells Transl Med. 2021;10(8):1138–1147. doi: 10.1002/sctm.20-0497
  57. Carstens MH, Gómez A, Cortés R, et al. Non-reconstructable peripheral vascular disease of the lower extremity in ten patients treated with adipose-derived stromal vascular fraction cells. Stem Cell Res. 2017;18:14–21. doi: 10.1016/j.scr.2016.12.001
  58. Carstens MH, Zelaya M, Calero D, et al. Adipose-derived stromal vascular fraction (SVF) cells for the treatment of non-reconstructable peripheral vascular disease in patients with critical limb ischemia: a 6-year follow-up showing durable effects. Stem Cell Res. 2020;49:102071. doi: 10.1016/j.scr.2020.102071
  59. Han SK, Kim HR, Kim WK. The treatment of diabetic ulcers with unprocessed lipoaspirate cells: a pilot study. Wound Repair Regen. 2010;18(4):342–348. doi: 10.1111/j.1524-475X.2010.00593.x
  60. Guo J, Dardik A, Fang K, et al. Meta-analysis on the treatment of diabetic foot ulcers with autologous stem cells. Stem Cell Res Ther. 2017;8(1):228–238. doi: 10.1186/s13287-017-0683-2
  61. Kano MR, Morishita Y, Iwata C, et al. VEGF-A and FGF-2 synergistically promote neoangiogenesis through enhancement of endogenous PDGF-B-PDGFRbeta signaling. Cell Sci. 2005;118(Pt 16): 3759–3768. doi: 10.1242/jcs.02483
  62. Holm JS, Toyserkani NM, Sorensen JA. Adipose-derived stem cells for treatment of chronic ulcers: current status. Stem Cell Res Ther. 2018;9(1):142. doi: 10.1186/s13287-018-0887-0
  63. Meuli M, Hartmann-Fritsch F, Hüging M, et al. A cultured autologous dermo-epidermal skin substitute for full-thickness skin defects: a phase I, open, prospective clinical trial in children. Plast Reconstr Surg. 2019;144(1):188–198. doi: 10.1097/PRS.0000000000005746
  64. Hyldig K, Riis S, Pennisi CP, et al. Implications of extracellular matrix production by adipose tissue-derived stem cells for development of wound healing therapies. Int J Mol Sci. 2017;18(6):1167. doi: 10.3390/ijms18061167
  65. Hu MS, Borrelli MR, Lorenz HP, et al. Mesenchymal stromal cells and cutaneous wound healing: a comprehensive review of the background, role, and therapeutic potential. Stem Cells Int. 2018;2018:6901983. doi: 10.1155/2018/6901983
  66. van Abeelen MH, Ulrich DJ. Lipofilling of skin contour defects in a leaking stoma: a new method to solve a difficult problem. J Plast Reconstr Aesthet Surg. 2015;68(1):139–140. doi: 10.1016/j.bjps.2014.08.073
  67. Bene MD, Pozzi MR, Rovati L, et al. Autologous fat grafting for scleroderma-induced digital ulcers. An effective technique in patients with systemic sclerosis. Handchir Mikrochir Plast Chir. 2014;46(4):242–247. doi: 10.1055/s-0034-1376970
  68. Stasch T, Hoehne J, Huynh T, et al. Debridement and autologous lipotransfer for chronic ulceration of the diabetic foot and lower limb improves wound healing. Plast Reconstr Surg. 2015;136:1357–1366. doi: 10.1097/PRS.0000000000001819
  69. van Dongen JA, Boxtel JV, Uguten M, et al. Tissue stromal vascular fraction improves early scar healing: a prospective randomized multicenter clinical trial. Aesthet Surg J. 2021;42(7):477–488. doi: 10.1093/asj/sjab431
  70. Zhou Y, Zhang XL, Lu ST, et al. Human adipose-derived mesenchymal stem cells-derived exosomes encapsulated in pluronic F127 hydrogel promote wound healing and regeneration. Stem Cell Res Ther. 2022;13(1):407. doi: 10.1186/s13287-022-02980-3
  71. Vanikar AV, Trivedi HL, Kumar A, et al. Co-infusion of donor adipose tissue-derived mesenchymal and hematopoietic stem cells helps safe minimization of immunosuppression in renal transplantation — single center experience. Ren Fail. 2014;36(9):1376–1384. doi: 10.3109/0886022X.2014.950931
  72. Nesteruk J, Voronina N, Kundt G, et al. Stem cell registry programme for patients with ischemic cardiomyopathy undergoing coronary artery bypass grafting: what benefits does it derive? ESC Heart Fail. 2017;4(2):105–111. doi: 10.1002/ehf2.12132
  73. Castillo-Cardiel G, López-Echaury AC, Saucedo-Ortiz JA, et al. Bone regeneration in mandibular fractures after the application of autologous mesenchymal stem cells, a randomized clinical trial. Dent Traumatol. 2017;33(1):38–44. doi: 10.1111/edt.12303
  74. Gao L, Zhang Y, Hu B, et al. Phase II multicenter, randomized, double-blind controlled study of efficacy and safety of umbilical cord-derived mesenchymal stromal cells in the prophylaxis of chronic graft-versus-host disease after HLA-haploidentical stem-cell transplantation. J Clin Oncol. 2016;34(24):2843–2850. doi: 10.1200/JCO.2015.65.3642
  75. Houtgraaf JH, de Jong R, Kazemi K, et al. Intracoronary infusion of allogeneic mesenchymal precursor cells directly after experimental acute myocardial infarction reduces infarct size, abrogates adverse remodeling, and improves cardiac function. Circ Res. 2013;113(2):153–166. doi: 10.1161/CIRCRESAHA.112.300730
  76. Gutiérrez Santamaría J, Masiá Gridilla J, Pamias Romero J, et al. Fat grafting is a feasible technique for the sequelae of head and neck cancer treatment. J Craniomaxillofac Surg. 2017;45(1):93–98. doi: 10.1016/j.jcms.2016.10.019
  77. Debald M, Pech T, Kaiser C, et al. Lipofilling effects after breast cancer surgery in post-radiation patients: an analysis of results and algorithm proposal. Eur J Plast Surg. 2017;40(5):447–454. doi: 10.1007/s00238-017-1311-1
  78. Dreno B, Amici JM, Demessant-Flavigny AL, et al. The impact of acne, atopic dermatitis, skin toxicities and scars on quality of life and the importance of a holistic treatment approach. Clin Cosmet Investig Dermatol. 2021;14:623–632. doi: 10.2147/CCID.S315846
  79. Clayton RW, Göbel K, Niessen CM, et al. Homeostasis of the sebaceous gland and mechanisms of acne pathogenesis. Br J Dermatol. 2019;181(4):677–690. doi: 10.1111/bjd.17981
  80. Zhao H, Hao L, Chen X, et al. An efficacy study of a new radical treatment for acne vulgaris using fat injection. Aesthet Surg J. 2021;41(8):1061–1072. doi: 10.1093/asj/sjab162
  81. Nilforoushzadeh MA, Heidari-Kharaji M, Alavi S, et al. Transplantation of autologous fat, stromal vascular fraction (SVF) cell, and platelet-rich plasma (PRP) for cell therapy of atrophic acne scars: clinical evaluation and biometric assessment. J Cosmet Dermatol. 2022;21(5):2089–2098. doi: 10.1111/jocd.14333
  82. Kwon HH, Yang SH, Lee J, et al. Combination treatment with human adipose tissue stem cell-derived exosomes and fractional CO2 laser for acne scars: a 12-week prospective, double-blind, randomized, split-face study. Acta Derm Venereol. 2020;100(18):adv00310. doi: 10.2340/00015555-3666
  83. Kurokawa I, Layton AM, Ogawa R. Updated treatment for acne: targeted therapy based on pathogenesis. Dermatol Ther (Heidelb). 2021;11(4):1129–1139. doi: 10.1007/s13555-021-00552-6
  84. Ferrari D, Casciano F, Secchiero P, Reali E. Purinergic signaling and inflammasome activation in psoriasis pathogenesis. Int J Mol Sci. 2021;22(17):9449. doi: 10.3390/ijms22179449
  85. Mizuguchi S, Gotoh K, Nakashima Y, et al. Mitochondrial reactive oxygen species are essential for the development of psoriatic inflammation. Front Immunol. 2021;12:714897. doi: 10.3389/fimmu.2021.714897
  86. Shi F, Guo LC, Zhu WD, et al. Human adipose tissue-derived MSCs improve psoriasis-like skin inflammation in mice by negatively regulating ROS. J Dermatolog Treat. 2022;33(4):2129–2136. doi: 10.1080/09546634.2021.1925622
  87. Xu F, Fei Z, Dai H, et al. Mesenchymal stem cell-derived extracellular vesicles with high PD-L1 expression for autoimmune diseases treatment. Adv Mater. 2022;34(1):e2106265. doi: 10.1002/adma.202106265
  88. Chen H, Niu JW, Ning HM, et al. Treatment of psoriasis with mesenchymal stem cells. Am J Med. 2016;129(3):13–14. doi: 10.1016/j.amjmed.2015.11.001
  89. De Jesus MM, Santiago JS, Trinidad CV, et al. Autologous adipose-derived mesenchymal stromal cells for the treatment of psoriasis vulgaris and psoriatic arthritis: a case report. Cell Transplant. 2016;25(11):2063–2069. doi: 10.3727/096368916X691998
  90. Comella K, Parlo M, Daly R, Dominessy K. First-in-man intravenous implantation of stromal vascular fraction in psoriasis: a case study. Int Med Case Rep J. 2018;11:59–64. doi: 10.2147/IMCRJ.S163612
  91. Capucci S, Hahn-Pedersen J, Vilsbøll A, Kragh N. Impact of atopic dermatitis and chronic hand eczema on quality of life compared with other chronic diseases. Dermatitis. 2020;31(3):178–184. doi: 10.1097/DER.0000000000000598
  92. Hofmann MA, Fluhr JW, Ruwwe-Glösenkamp C, et al. Role of IL-17 in atopy — a systematic review. Clin Transl Allergy. 2021;11:12047. doi: 10.1002/clt2.12047
  93. Ring J, Alomar A, Bieber T, et al. Guidelines for treatment of atopic eczema (atopic dermatitis) part I. J Eur Acad Dermatol Venereol. 2012;26(8):1045–1060. doi: 10.1111/j.1468-3083.2012.04635.x
  94. Ryu B, Baek J, Kim H, et al. Anti-inflammatory effects of M-MSCs in DNCB-induced atopic dermatitis mice. Biomedicines. 2020;8(10):439. doi: 10.3390/biomedicines8100439
  95. Park A, Park H, Yoon J, et al. Priming with toll-like receptor 3 agonist or interferon-gamma enhances the therapeutic effects of human mesenchymal stem cells in a murine model of atopic dermatitis. Stem Cell Res Ther. 2019;10(1):66. doi: 10.1186/s13287-019-1164-6
  96. Jung H, Son GM, Lee JJ, et al. Therapeutic effects of tonsil-derived mesenchymal stem cells in an atopic dermatitis mouse model. In Vivo. 2021;35(2):845–857. doi: 10.21873/invivo.12325
  97. Shin KO, Ha DH, Kim JO, et al. Exosomes from human adipose tissue-derived mesenchymal stem cells promote epidermal barrier repair by inducing de novo synthesis of ceramides in atopic dermatitis. Cells. 2020;9(3):680. doi: 10.3390/cells9030680
  98. Ra JC, Kang SK, Shin IS, et al. Stem cell treatment for patients with autoimmune disease by systemic infusion of culture-expanded autologous adipose tissue derived mesenchymal stem cells. J Transl Med. 2011;9:181. doi: 10.1186/1479-5876-9-181
  99. Kim HS, Lee JH, Roh KH, et al. Clinical trial of human umbilical cord blood-derived stem cells for the treatment of moderate-to-severe atopic dermatitis: phase I/IIa studies. Stem Cells. 2017;35(1): 248–255. doi: 10.1002/stem.2401
  100. fda.gov [Internet]. Food and Drug Administration [cited 08 August 2023]. Available from: https://www.fda.gov/consumers/consumer-updates/fda-warns-about-stem-cell-therapies

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies