Нейро-иммунные взаимодействия в холинергическом противовоспалительном пути



Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Все больше исследований свидетельствуют о том, что нервная и иммунная системы активно взаимодействуют между собой. Изучение механизмов, лежащих в основе развития септического шока, привело к открытию качественно нового типа нейро-иммунных взаимодействий - холинергического противовоспалительного пути с участием блуждающего нерва. Однако несмотря на то, что электрическая стимуляция блуждающего нерва уже активно применяется для снятия симптомов некоторых аутоиммунных заболеваний, многие молекулярные и клеточные аспекты холинергического противовоспалительного пути остаются неизвестными или спорными. В настоящем обзоре рассматриваются механизмы рецепции медиаторов воспаления афферентными окончаниями блуждающего нерва и клетками нервной ткани в области area postrema, нервные центры, предположительно участвующие в обработке иммунной информации, эфферентные парасимпатические эффекты на иммунную систему, в частности выделение провоспалительных цитокинов макрофагами селезенки, а также роль холинергического противовоспалительного пути в поддержании гомеостаза в организме.

Полный текст

Доступ закрыт

Об авторах

О. П Тучина

Институт живых систем Балтийского федерального университета им. И. Канта

Email: otuchina@kantiana.ru
Калининград, Россия

Список литературы

  1. Tanaka S., Ide M., Shibutani T. et al. Lipopolysaccharide-induced microglial activation induces learning and memory deficits without neuronal cell death in rats. J. Neurosci. Res. 2006; 83: 557-66.
  2. Banks W.A., Robinson S.M. Minimal penetration of lipopolysac-charide across the murine blood-brain barrier. Brain Behav. Immun. 2009; 24(1): 102-9.
  3. Maier S.F. Bi-directional immune-brain communication: Implications for understanding stress, pain, and cognition. Brain Behav. Immun. 2003; 17: 69-85.
  4. Tracey K.J. The inflammatory reflex. Nature 2002; 420(6917): 853-9.
  5. Brocker C., Thompson D., Matsumoto A. et al. Evolutionary divergence and functions of the human interleukin (IL) gene family. Hum. Genomics 2010; 5(1): 30-55.
  6. Banks W.A., Kastin A.J., Gutierrez E.G. Penetration of interleukin-6 across the murine blood-brain barrier. Neurosci. Lett.1994; 1(179): 53-6.
  7. Giulian D., Baker T.J., Shih L.C. et al. Interleukin-1 of the central nervous system is produced by ameboid microglia. J. Exp. Med. 1986; 164: 594-604.
  8. Tracey K.J., Beutler B., Lowry S.F. et al. Shock and tissue injury induced by recombinant human cachectin. Science 1986; 234: 470-4.
  9. Tracey K.J., Vlassara H., Cerami A. Cachectin/tumour necrosis factor. Lancet 1989; 1(8647): 1122-6.
  10. Tracey K.J., Abraham E. From mouse to man: or what have we learned about cytokine-based anti-inflammatory therapies? Shock 1999; 11: 224-5.
  11. Kobierski L.A., Srivastava S., Borsook D. Systemic lipopolysaccha-ride and interleukin-1b activate the interleukin 6: STAT intracellular signalling pathway in neurons of mouse trigeminal ganglion. Neurosci. Lett. 2000; 281: 61-4.
  12. Goehler L.E., Gaykema R.P., Hansen M.K. et al. Vagal immune-to-brain communication: a visceral chemosensory pathway. Auton. Neurosci. 2000; 85: 49-59.
  13. Ek M., Kurosawa M., Lundeberg T. et al. Activation of vagal afferents after intravenous injection of interleukin-1b: role of endogenous prostaglandins. J. Neurosci. 1998; 18: 9471-9.
  14. Emch G.S., Hermann G.E., Rogers R.C. TNF-alpha activates solitary nucleus neurons responsive to gastric distension. Am. J. Physiol. Gastroin-test. Liver Physiol. 2000; 279(3): 582-6.
  15. Fischer A., McGregor G.P., Saria A. et al. Induction of tachykinin gene and peptide expression in guinea-pig nodose primary afferent neurons by allergic airway inflammation. J. Clin. Invest. 1996; 98: 2284-91.
  16. Greene R., Fowler J., MacGlashan D. et al. IgE challenged human lung mast cells excite vagal sensory neurons in vitro. J. Appl. Physiol. 1988; 64: 2249-53.
  17. Undem B.J., Hubbard W., Weinreich D. Immunologically induced neuromodulation of guinea pig nodose ganglion neurons. J. Auton. Nerv. Syst. 1993; 44: 35-44.
  18. Berthoud H.R., Kressel M., Neuhuber W.L. Vagal afferent innervation of the rat abdominal paraganglia as revealed by antero-grade DiI-tracing and confocal microscopy. Acta Anat. 1995; 152: 127-32.
  19. Goehler L.E., Gaykema R.P.A., Nguyen K.T. et al. Interleukin-1 b in immune cells of the abdominal vagus nerve: a link between the immune and nervous systems? J. Neurosci. 1999; 19(7): 2799-2806.
  20. Gaykema R.P., Goehler L.E., Tilders F.J. et al. Bacterial endotoxin induces fos immunoreactivity in primary afferent neurons of the vagus nerve. Neuroimmunomodulation 1998; 5(5): 234-40.
  21. Goehler L.E., Gaykema R.P.A., Hammack S.E. et al. Interleukin-1 induces c-Fos immunoreactivity in primary afferent neurons of the vagus nerve. Brain Res. 1998A; 804: 306-10.
  22. Goehler L.E., Gaykema R.P.A., Hansen M.K. et al. Staphylococcal enterotoxin B induces fever, brain c-Fos expression, and serum corticosterone in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001; 280(5): R1434-9.
  23. Pavlov V., Tracey K. The vagus nerve and the inflammatory reflex-linking immunity and metabolism. Nat. Rev. Endocrinol. 2012; 8: 743-54.
  24. Hermann G., Emch G., Tovar C. et al. c-Fos generation in the dorsal vagal complex after systemic endotoxin is not dependent on the vagus nerve. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001; 280(1): 289-99.
  25. Shapiro R.E., Miselis R.R. The central organization of the vagus nerve innervating the stomach of the rat. J. Comp. Neurol. 1985; 238: 473-88.
  26. Rogers R.C., McCann M.J. Intramedullary connections of the gastric region in the solitary nucleus: a biocytin histochemical tracing study in the rat. J. Auton. Nerv. Syst. 1993; 42(2): 119-30.
  27. Miller A.D., Leslie R.A. The area postrema and vomiting. Front. Neuroendocrinol. 1994; 15(4): 301-20.
  28. Liu J., Wu J. TNF-а sets area postrema on fire in renovascular hypertension. Cardiovasc. Res. 2019; 115(6): 995-7.
  29. Manta S., Dong J., Debonnel G. et al. Enhancement of the function of rat serotonin and norepinephrine neurons by sustained vagus nerve stimulation. J. Psychiatry Neurosci. 2009; 34(4): 272-80.
  30. Ericsson A., Kovacs K.J., Sawchenko P.E. A functional neuro-anatomical analysis of central pathways subserving the effects of interleukin-1 on stress-related neuroendocrinе neurons. J. Neurosci. 1994; 14: 897-913.
  31. Coutinho A.E., Chapman K.E. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol. Cell. Endocrinol. 2011; 335(1): 2-13.
  32. Wan W., Wetmore L., Sorensen C.M. et al. Neural and biochemical mediators of endotoxin and stress-induced c-fos expression in the rat brain. Brain Res. Bull. 1994; 34: 7-14.
  33. Gaykema R.P.A., Goehler L.E., Armstrong C.B. et al. Differential FOS expression in rat brain induced by lipopolysaccharide and staphylococcal enterotoxin B. Neuroimmunomodul. 1999; 6: 220.
  34. Day H.E.W., Curran E.J., Watson Jr.S.J. et al. Distinct neurochemical populations in the rat central nucleus of the amygdala and bed nucleus of the stria terminalis: evidence for their selective activation by interleukin-1b. J. Comp. Neurol. 1999; 413: 113-28.
  35. Cullinan W.E., Helmreich D.L., Watson S.J. Fos expression in forebrain afferents to the hypothalamic paraventricular nucleus following swim stress. J. Comp. Neurol. 1996; 368: 88-99.
  36. Kovacs K.J. c-Fos as a transcription factor: a stressful (re)view from a functional map. Neurochem. Int. 1998; 33: 287-97.
  37. Kovacs K.J. Measurement of immediate-early gene activation - c-fos and beyond. J. Neuroendocrinol. 2008; 20(6): 665-72.
  38. Rivest S., Laflamme N. Neuronal activity and neuropeptide gene transcription in the brains of immune-challenged rats. J. Neuroendocrinol. 1995; 7: 501-25.
  39. Groves A., Kihara Y., Jonnalagadda D. et al. A functionally defined in vivo astrocyte population identified by c-Fos activation in a mouse model of multiple sclerosis modulated by S1P signaling: immediate-early Astrocytes (ieAstrocytes). eNeuro 2018; 5(5): https://www.eneuro.org/content/ eneuro/5/5/ENEUR0.0239-18.2018.full.pdf.
  40. Eun S.Y., Hong Y.H., Kim E.H. et al. Glutamate receptor-mediated regulation of c-fos expression in cultured microglia. Biochem. Biophys. Res. Commun. 2004; 325: 320-7.
  41. Sugama S., Takenouchi T., Fujita M. et al. Differential microglial activation between acute stress and lipopolysaccharide treatment. J. Neuroimmunol. 2009; 207(1-2): 24-31.
  42. Hansen M.K., Nguyen K.T., Goehler L.E. et al. Effects of vagotomy on lipopolysaccharide-induced brain interleukin-1 b protein in rats. Auton. Neurosci. 2000; 85: 119-26.
  43. Yang B., Treweek J.B., Kulkarni R.P. et al. Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell 2014; 158(4): 945-58.
  44. Reardon T.R., Murray A.J., Turi G.F. et al. Rabies virus CVS-N2c(AG) strain enhances retrograde synaptic transfer and neuronal viability. Neuron 2016; 89(4): 711-24.
  45. Boldogkoi Z., Sik A., Denes A. et al. Novel tracing paradigms-geneti-cally engineered herpesviruses as tools for mapping functional circuits within the CNS: present status and future prospects. Prog. Neurobiol. 2004; 72: 417-45.
  46. Kempadoo K.A., Mosharov E.V., Choi S.J. et al. Dopamine release from the locus coeruleus to the dorsal hippocampus promotes spatial learning and memory. PNAS USA 2016; 113(51): 14835-40.
  47. Ben-Shaanan T.L., Azulay-Debby H., Dubovik T. et al. Activation of the reward system boosts innate and adaptive immunity. Nat. Med. 2016; 22(8): 940-4.
  48. Borovikova L.V., Ivanova S., Zhang M. et al.Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 2000; 405(6785): 458-62.
  49. Bellinger D.L., Felten S.Y., Lorton D. et al. Origin of noradrenergic innervation of the spleen in rats. Brain Behav. Immun. 1989; 3: 291-311.
  50. Nance D.M., Burns J. Innervation of the spleen in the rat: Evidence for absence of afferent innervation. Brain Behav. Immun. 1989; 3: 281-90.
  51. Cano G., Sved A.F., Rinaman L. et al. Characterization of the central nervous system innervation of the rat spleen using viral transneuronal tracing. J. Comp. Neurol. 2001; 439: 1-18.
  52. Browning K.N., Verheijden S., Boeckxstaens G.E. The vagus nerve in appetite regulation, mood, and intestinal inflammation. Gastroenterol. 2017; 152(4): 730-44.
  53. Bellinger D.L., Lorton D., Hamill R.W. et al. Acetylcholinesterase staining and choline acetyltransferase activity in the young adult rat spleen: lack of evidence for cholinergic innervation. Brain Behav. Immun. 1993; 7(3): 191-204.
  54. Bellinger D.L., Lorton D. Autonomic regulation of cellular immune function. Auton. Neurosci. Basic Clin. 2014; 182: 15-41.
  55. Bratton B.O., Martelli D., McKinley M.J. et al. Neural regulation of inflammation: No neural connection from the vagus to splenic sympathetic neurons. Exp. Physiol. 2012; 97(11): 1180-5.
  56. Kaestner C.L., Smith E.H., Peirce S.G. et al. Immunohistochemical analysis of the mouse celiac ganglion: An integrative relay station of the peripheral nervous system. J. Comp. Neurol. 2019; 527(16): 2742-60.
  57. Martelli D., McKinley M.J., McAllen R.M. The cholinergic antiinflammatory pathway: a critical review. Auton. Neurosci. 2014; 182: 65-9.
  58. Antonica A., Magni F., Mearini L. et al. Vagal control of lymphocyte release from rat thymus. J. Auton. Nerv. Syst. 1994; 48(3): 187-97.
  59. Rosas-Ballina M., Olofsson P.S., Ochani M. et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 2011; 334: 98-101.
  60. Reardon C., Duncan G.S., Brustle A. et al. Lymphocyte derived ACh regulates local innate but not adaptive immunity. PNAS USA 2013; 110(4): 1410-5.
  61. Salamone G., Lombardi G., Gori S. et al. Cholinergic modulation of dendritic cell function. J. Neuroimmunol. 2011; 236(1-2): 47-56.
  62. Murray K., Godinez D.R., Brust-Mascher I. et al. Neuroanatomy of the spleen: Mapping the relationship between sympathetic neurons and lymphocytes. PLoS One 2017; 12(7): e0182416.
  63. Gomariz R.P., Delgado M., Naranjo J.R. et al. VIP gene expression in rat thymus and spleen. Brain Behav. Immun. 1993; 7(4): 271-8.
  64. Romano T.A., Felten S.Y., Felten D.L. et al. Neuropeptide-Y innervation of the rat spleen: another potential immunomodulatory neuropeptide. Brain Behav. Immun. 1991; 5(1): 116-31.
  65. Lorton D., Bellinger D.L., Felten S.Y. et al. Substance P innervation of spleen in rats: nerve fibers associated with lymphocytes and macrophages in specific compartments of the spleen. Brain Behav. Immun. 1991; 5(1): 29-40.
  66. Wheway J., Mackay C.R., Newton R.A. et al. A fundamental bimodal role for neuropeptide Y1 receptor in the immune system. J. Exp. Med. 2005; 202(11): 1527-38.
  67. Gonzalez-Rey E., Chorny A., Fernandez-Martin A. et al. Vasoactive intestinal peptide generates human tolerogenic dendritic cells that induce CD4 and Cd8 regulatory T cells. Blood 2006; 107(9): 3632-8.
  68. Kim S., Piao J., Hwang D.Y. et al. Substance P accelerates wound repair by promoting neovascularization and preventing inflammation in an ischemia mouse model. Life Sci. 2019; 225: 98-106.
  69. Arredondo J., Chernyavsky A.I., Jolkovsky D.L. et al. SLURP-2: a novel cholinergic signaling peptide in human mucocutaneous epithelium. J. Cell. Physiol. 2006; 208(1): 238-45.
  70. Moriwaki Y., Yoshikawa K., Fukuda H. et al. Immune system expression of SLURP-1 and SLURP-2, two endogenous nicotinic acetylcholine receptor ligands. Life Sci. 2007; 80(24-25): 2365-8.
  71. Chimienti F., Hogg R.C., Plantard L. et al. Identification of SLURP-1 as an epidermal neuromodulator explains the clinical phenotype of Mal de Meleda. Hum. Mol. Genet. 2003; 12(22): 3017-24.
  72. Fujii T., Horiguchi K., Sunaga H. et al. SLURP-1, an endogenous alpha7 nicotinic acetylcholine receptor allosteric ligand, is expressed in CD205+ dendritic cells in human tonsils and potentiates lymphocytic cholinergic activity. J. Neuroimmunol. 2014; 267(1-2): 43-9.
  73. Moriwaki Y., Watanabe Y., Shinagawa T. et al. Primary sensory neuronal expression of SLURP-1, an endogenous nicotinic acetylcholine receptor ligand. Neurosci. Res. 2009; 64(4): 403-12.
  74. Fujii T., Mashimo M., Moriwaki Y. et al. Expression and function of the cholinergic system in immune cells. Front. Immunol. 2017; 8: 1085.
  75. Nathan C. Points of control in inflammation. Nature 2002; 420(6917): 846-52.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Эко-Вектор, 2020



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах