Neuro-immune interactions in cholinergic antiinflammatory pathway



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

More and more researches suggest that the nervous and immune systems actively interact. Investigation of the mechanisms that underlie the development of septic shock led to discovery of a qualitatively new type of neuro-immune interactions - the cholinergic anti-inflammatory pathway involving the vagus nerve. However, despite the electrical stimulation of the vagus nerve that is already actively used in order to relieve the symptoms of some autoimmune conditions, many molecular and cellular aspects of the cholinergic anti-inflammatory pathway remain unknown or controversial. This review discusses the mechanisms of the reception of inflammatory mediators by vagal afferent fibers and nervous cells in the area postrema, the nerve centers presumably involved in the processing of immune information, the efferent parasympathetic effects on the immune system, in particular, the release of pro-inflammatory cytokines by spleen macrophages, as well as the role of cholinergic anti-inflammatory pathway in maintaining homeostasis in the body.

Full Text

Restricted Access

About the authors

O. P Tuchina

School of Life Sciences, Immanuel Kant Baltic Federal University

Email: otuchina@kantiana.ru

References

  1. Tanaka S., Ide M., Shibutani T. et al. Lipopolysaccharide-induced microglial activation induces learning and memory deficits without neuronal cell death in rats. J. Neurosci. Res. 2006; 83: 557-66.
  2. Banks W.A., Robinson S.M. Minimal penetration of lipopolysac-charide across the murine blood-brain barrier. Brain Behav. Immun. 2009; 24(1): 102-9.
  3. Maier S.F. Bi-directional immune-brain communication: Implications for understanding stress, pain, and cognition. Brain Behav. Immun. 2003; 17: 69-85.
  4. Tracey K.J. The inflammatory reflex. Nature 2002; 420(6917): 853-9.
  5. Brocker C., Thompson D., Matsumoto A. et al. Evolutionary divergence and functions of the human interleukin (IL) gene family. Hum. Genomics 2010; 5(1): 30-55.
  6. Banks W.A., Kastin A.J., Gutierrez E.G. Penetration of interleukin-6 across the murine blood-brain barrier. Neurosci. Lett.1994; 1(179): 53-6.
  7. Giulian D., Baker T.J., Shih L.C. et al. Interleukin-1 of the central nervous system is produced by ameboid microglia. J. Exp. Med. 1986; 164: 594-604.
  8. Tracey K.J., Beutler B., Lowry S.F. et al. Shock and tissue injury induced by recombinant human cachectin. Science 1986; 234: 470-4.
  9. Tracey K.J., Vlassara H., Cerami A. Cachectin/tumour necrosis factor. Lancet 1989; 1(8647): 1122-6.
  10. Tracey K.J., Abraham E. From mouse to man: or what have we learned about cytokine-based anti-inflammatory therapies? Shock 1999; 11: 224-5.
  11. Kobierski L.A., Srivastava S., Borsook D. Systemic lipopolysaccha-ride and interleukin-1b activate the interleukin 6: STAT intracellular signalling pathway in neurons of mouse trigeminal ganglion. Neurosci. Lett. 2000; 281: 61-4.
  12. Goehler L.E., Gaykema R.P., Hansen M.K. et al. Vagal immune-to-brain communication: a visceral chemosensory pathway. Auton. Neurosci. 2000; 85: 49-59.
  13. Ek M., Kurosawa M., Lundeberg T. et al. Activation of vagal afferents after intravenous injection of interleukin-1b: role of endogenous prostaglandins. J. Neurosci. 1998; 18: 9471-9.
  14. Emch G.S., Hermann G.E., Rogers R.C. TNF-alpha activates solitary nucleus neurons responsive to gastric distension. Am. J. Physiol. Gastroin-test. Liver Physiol. 2000; 279(3): 582-6.
  15. Fischer A., McGregor G.P., Saria A. et al. Induction of tachykinin gene and peptide expression in guinea-pig nodose primary afferent neurons by allergic airway inflammation. J. Clin. Invest. 1996; 98: 2284-91.
  16. Greene R., Fowler J., MacGlashan D. et al. IgE challenged human lung mast cells excite vagal sensory neurons in vitro. J. Appl. Physiol. 1988; 64: 2249-53.
  17. Undem B.J., Hubbard W., Weinreich D. Immunologically induced neuromodulation of guinea pig nodose ganglion neurons. J. Auton. Nerv. Syst. 1993; 44: 35-44.
  18. Berthoud H.R., Kressel M., Neuhuber W.L. Vagal afferent innervation of the rat abdominal paraganglia as revealed by antero-grade DiI-tracing and confocal microscopy. Acta Anat. 1995; 152: 127-32.
  19. Goehler L.E., Gaykema R.P.A., Nguyen K.T. et al. Interleukin-1 b in immune cells of the abdominal vagus nerve: a link between the immune and nervous systems? J. Neurosci. 1999; 19(7): 2799-2806.
  20. Gaykema R.P., Goehler L.E., Tilders F.J. et al. Bacterial endotoxin induces fos immunoreactivity in primary afferent neurons of the vagus nerve. Neuroimmunomodulation 1998; 5(5): 234-40.
  21. Goehler L.E., Gaykema R.P.A., Hammack S.E. et al. Interleukin-1 induces c-Fos immunoreactivity in primary afferent neurons of the vagus nerve. Brain Res. 1998A; 804: 306-10.
  22. Goehler L.E., Gaykema R.P.A., Hansen M.K. et al. Staphylococcal enterotoxin B induces fever, brain c-Fos expression, and serum corticosterone in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001; 280(5): R1434-9.
  23. Pavlov V., Tracey K. The vagus nerve and the inflammatory reflex-linking immunity and metabolism. Nat. Rev. Endocrinol. 2012; 8: 743-54.
  24. Hermann G., Emch G., Tovar C. et al. c-Fos generation in the dorsal vagal complex after systemic endotoxin is not dependent on the vagus nerve. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001; 280(1): 289-99.
  25. Shapiro R.E., Miselis R.R. The central organization of the vagus nerve innervating the stomach of the rat. J. Comp. Neurol. 1985; 238: 473-88.
  26. Rogers R.C., McCann M.J. Intramedullary connections of the gastric region in the solitary nucleus: a biocytin histochemical tracing study in the rat. J. Auton. Nerv. Syst. 1993; 42(2): 119-30.
  27. Miller A.D., Leslie R.A. The area postrema and vomiting. Front. Neuroendocrinol. 1994; 15(4): 301-20.
  28. Liu J., Wu J. TNF-а sets area postrema on fire in renovascular hypertension. Cardiovasc. Res. 2019; 115(6): 995-7.
  29. Manta S., Dong J., Debonnel G. et al. Enhancement of the function of rat serotonin and norepinephrine neurons by sustained vagus nerve stimulation. J. Psychiatry Neurosci. 2009; 34(4): 272-80.
  30. Ericsson A., Kovacs K.J., Sawchenko P.E. A functional neuro-anatomical analysis of central pathways subserving the effects of interleukin-1 on stress-related neuroendocrinе neurons. J. Neurosci. 1994; 14: 897-913.
  31. Coutinho A.E., Chapman K.E. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol. Cell. Endocrinol. 2011; 335(1): 2-13.
  32. Wan W., Wetmore L., Sorensen C.M. et al. Neural and biochemical mediators of endotoxin and stress-induced c-fos expression in the rat brain. Brain Res. Bull. 1994; 34: 7-14.
  33. Gaykema R.P.A., Goehler L.E., Armstrong C.B. et al. Differential FOS expression in rat brain induced by lipopolysaccharide and staphylococcal enterotoxin B. Neuroimmunomodul. 1999; 6: 220.
  34. Day H.E.W., Curran E.J., Watson Jr.S.J. et al. Distinct neurochemical populations in the rat central nucleus of the amygdala and bed nucleus of the stria terminalis: evidence for their selective activation by interleukin-1b. J. Comp. Neurol. 1999; 413: 113-28.
  35. Cullinan W.E., Helmreich D.L., Watson S.J. Fos expression in forebrain afferents to the hypothalamic paraventricular nucleus following swim stress. J. Comp. Neurol. 1996; 368: 88-99.
  36. Kovacs K.J. c-Fos as a transcription factor: a stressful (re)view from a functional map. Neurochem. Int. 1998; 33: 287-97.
  37. Kovacs K.J. Measurement of immediate-early gene activation - c-fos and beyond. J. Neuroendocrinol. 2008; 20(6): 665-72.
  38. Rivest S., Laflamme N. Neuronal activity and neuropeptide gene transcription in the brains of immune-challenged rats. J. Neuroendocrinol. 1995; 7: 501-25.
  39. Groves A., Kihara Y., Jonnalagadda D. et al. A functionally defined in vivo astrocyte population identified by c-Fos activation in a mouse model of multiple sclerosis modulated by S1P signaling: immediate-early Astrocytes (ieAstrocytes). eNeuro 2018; 5(5): https://www.eneuro.org/content/ eneuro/5/5/ENEUR0.0239-18.2018.full.pdf.
  40. Eun S.Y., Hong Y.H., Kim E.H. et al. Glutamate receptor-mediated regulation of c-fos expression in cultured microglia. Biochem. Biophys. Res. Commun. 2004; 325: 320-7.
  41. Sugama S., Takenouchi T., Fujita M. et al. Differential microglial activation between acute stress and lipopolysaccharide treatment. J. Neuroimmunol. 2009; 207(1-2): 24-31.
  42. Hansen M.K., Nguyen K.T., Goehler L.E. et al. Effects of vagotomy on lipopolysaccharide-induced brain interleukin-1 b protein in rats. Auton. Neurosci. 2000; 85: 119-26.
  43. Yang B., Treweek J.B., Kulkarni R.P. et al. Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell 2014; 158(4): 945-58.
  44. Reardon T.R., Murray A.J., Turi G.F. et al. Rabies virus CVS-N2c(AG) strain enhances retrograde synaptic transfer and neuronal viability. Neuron 2016; 89(4): 711-24.
  45. Boldogkoi Z., Sik A., Denes A. et al. Novel tracing paradigms-geneti-cally engineered herpesviruses as tools for mapping functional circuits within the CNS: present status and future prospects. Prog. Neurobiol. 2004; 72: 417-45.
  46. Kempadoo K.A., Mosharov E.V., Choi S.J. et al. Dopamine release from the locus coeruleus to the dorsal hippocampus promotes spatial learning and memory. PNAS USA 2016; 113(51): 14835-40.
  47. Ben-Shaanan T.L., Azulay-Debby H., Dubovik T. et al. Activation of the reward system boosts innate and adaptive immunity. Nat. Med. 2016; 22(8): 940-4.
  48. Borovikova L.V., Ivanova S., Zhang M. et al.Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 2000; 405(6785): 458-62.
  49. Bellinger D.L., Felten S.Y., Lorton D. et al. Origin of noradrenergic innervation of the spleen in rats. Brain Behav. Immun. 1989; 3: 291-311.
  50. Nance D.M., Burns J. Innervation of the spleen in the rat: Evidence for absence of afferent innervation. Brain Behav. Immun. 1989; 3: 281-90.
  51. Cano G., Sved A.F., Rinaman L. et al. Characterization of the central nervous system innervation of the rat spleen using viral transneuronal tracing. J. Comp. Neurol. 2001; 439: 1-18.
  52. Browning K.N., Verheijden S., Boeckxstaens G.E. The vagus nerve in appetite regulation, mood, and intestinal inflammation. Gastroenterol. 2017; 152(4): 730-44.
  53. Bellinger D.L., Lorton D., Hamill R.W. et al. Acetylcholinesterase staining and choline acetyltransferase activity in the young adult rat spleen: lack of evidence for cholinergic innervation. Brain Behav. Immun. 1993; 7(3): 191-204.
  54. Bellinger D.L., Lorton D. Autonomic regulation of cellular immune function. Auton. Neurosci. Basic Clin. 2014; 182: 15-41.
  55. Bratton B.O., Martelli D., McKinley M.J. et al. Neural regulation of inflammation: No neural connection from the vagus to splenic sympathetic neurons. Exp. Physiol. 2012; 97(11): 1180-5.
  56. Kaestner C.L., Smith E.H., Peirce S.G. et al. Immunohistochemical analysis of the mouse celiac ganglion: An integrative relay station of the peripheral nervous system. J. Comp. Neurol. 2019; 527(16): 2742-60.
  57. Martelli D., McKinley M.J., McAllen R.M. The cholinergic antiinflammatory pathway: a critical review. Auton. Neurosci. 2014; 182: 65-9.
  58. Antonica A., Magni F., Mearini L. et al. Vagal control of lymphocyte release from rat thymus. J. Auton. Nerv. Syst. 1994; 48(3): 187-97.
  59. Rosas-Ballina M., Olofsson P.S., Ochani M. et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 2011; 334: 98-101.
  60. Reardon C., Duncan G.S., Brustle A. et al. Lymphocyte derived ACh regulates local innate but not adaptive immunity. PNAS USA 2013; 110(4): 1410-5.
  61. Salamone G., Lombardi G., Gori S. et al. Cholinergic modulation of dendritic cell function. J. Neuroimmunol. 2011; 236(1-2): 47-56.
  62. Murray K., Godinez D.R., Brust-Mascher I. et al. Neuroanatomy of the spleen: Mapping the relationship between sympathetic neurons and lymphocytes. PLoS One 2017; 12(7): e0182416.
  63. Gomariz R.P., Delgado M., Naranjo J.R. et al. VIP gene expression in rat thymus and spleen. Brain Behav. Immun. 1993; 7(4): 271-8.
  64. Romano T.A., Felten S.Y., Felten D.L. et al. Neuropeptide-Y innervation of the rat spleen: another potential immunomodulatory neuropeptide. Brain Behav. Immun. 1991; 5(1): 116-31.
  65. Lorton D., Bellinger D.L., Felten S.Y. et al. Substance P innervation of spleen in rats: nerve fibers associated with lymphocytes and macrophages in specific compartments of the spleen. Brain Behav. Immun. 1991; 5(1): 29-40.
  66. Wheway J., Mackay C.R., Newton R.A. et al. A fundamental bimodal role for neuropeptide Y1 receptor in the immune system. J. Exp. Med. 2005; 202(11): 1527-38.
  67. Gonzalez-Rey E., Chorny A., Fernandez-Martin A. et al. Vasoactive intestinal peptide generates human tolerogenic dendritic cells that induce CD4 and Cd8 regulatory T cells. Blood 2006; 107(9): 3632-8.
  68. Kim S., Piao J., Hwang D.Y. et al. Substance P accelerates wound repair by promoting neovascularization and preventing inflammation in an ischemia mouse model. Life Sci. 2019; 225: 98-106.
  69. Arredondo J., Chernyavsky A.I., Jolkovsky D.L. et al. SLURP-2: a novel cholinergic signaling peptide in human mucocutaneous epithelium. J. Cell. Physiol. 2006; 208(1): 238-45.
  70. Moriwaki Y., Yoshikawa K., Fukuda H. et al. Immune system expression of SLURP-1 and SLURP-2, two endogenous nicotinic acetylcholine receptor ligands. Life Sci. 2007; 80(24-25): 2365-8.
  71. Chimienti F., Hogg R.C., Plantard L. et al. Identification of SLURP-1 as an epidermal neuromodulator explains the clinical phenotype of Mal de Meleda. Hum. Mol. Genet. 2003; 12(22): 3017-24.
  72. Fujii T., Horiguchi K., Sunaga H. et al. SLURP-1, an endogenous alpha7 nicotinic acetylcholine receptor allosteric ligand, is expressed in CD205+ dendritic cells in human tonsils and potentiates lymphocytic cholinergic activity. J. Neuroimmunol. 2014; 267(1-2): 43-9.
  73. Moriwaki Y., Watanabe Y., Shinagawa T. et al. Primary sensory neuronal expression of SLURP-1, an endogenous nicotinic acetylcholine receptor ligand. Neurosci. Res. 2009; 64(4): 403-12.
  74. Fujii T., Mashimo M., Moriwaki Y. et al. Expression and function of the cholinergic system in immune cells. Front. Immunol. 2017; 8: 1085.
  75. Nathan C. Points of control in inflammation. Nature 2002; 420(6917): 846-52.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies