Результаты сравнительной оценки эффективности применения плазмидной конструкции pBud-VEGF165-FGF2 в моделях аутонервной пластики дефекта седалищного нерва и тубуляции коллагеновой трубкой NeuraGen®



Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Травматические повреждения периферических нервов зачастую приводят к глубокой инвалидизации пациентов с частичной или полной утратой функции конечностей. Остается открытым вопрос о применении технологий замещения дефектов периферического нерва с одновременной стимуляцией его регенерации. Цель работы: оценка эффективности применения геннотерапевтической плазмидной конструкции рBud-VEGF165-FGF2 при замещении 5 мм диастаза седалищного нерва крысы методом аутонервной вставки или тубуляции трубкой NeuraGen®. Регенерацию седалищного нерва оценивали по функциональным и морфометрическим параметрам. Прямое введение плазмиды рBud-VEGF165-FGF2 стимулировало регенерацию седалищного нерва и восстановление двигательной функции в исследуемых группах с разной эффективностью. Анализ результатов посттравматического восстановления выявил, что замещение дефекта cедалищного нерва путем аутологичной вставки в сочетании с прямой генной терапией наиболее эффективно. Таким образом, аутонервная пластика периферического нерва остается «золотым стандартом» и является наиболее перспективной моделью исследования в комбинации с различными стимуляторами регенерации.

Полный текст

Доступ закрыт

Об авторах

Р. Ф Масгутов

Казанский (Приволжский) федеральный университет; Республиканская клиническая больница, Казань

Г. А Масгутова

Казанский (Приволжский) федеральный университет

Л. Р Мухаметова

Казанский (Приволжский) федеральный университет

К. Ф Идрисова

Казанский (Приволжский) федеральный университет

А. Ф Муллахметова

Казанский (Приволжский) федеральный университет

В. Ю Сыромятникова

Казанский (Приволжский) федеральный университет

А. А Богов

Республиканская клиническая больница, Казань

И. И Салафутдинов

Казанский (Приволжский) федеральный университет

С. С Архипова

Казанский (Приволжский) федеральный университет

Р. З Салихов

Республиканская клиническая больница, Казань

А. А Ризванов

Казанский (Приволжский) федеральный университет

Список литературы

  1. Roberto S.M., Bastos D., Mario G.S. et al. Traumatic injuries of peripheral nerves: a review with emphasis on surgical indication. Arq. Neuropsiquiatr. 2013; 71(10): 811-4.
  2. Patel N.P., Lyon K.A., Huang J.H. An update-tissue engineered nerve grafts for the repair of peripheral nerve injuries. Neural Regeneration Research 2018; 13(5): 764-74.
  3. Bryan J.P., Gordon T., Joseph R.L. et al. Biomedical Engineering Strategies for Peripheral Nerve Repair: Surgical Applications, State of the Art, and Future Challenges. Biomedical Engineering 2011; 39(2): 81-124.
  4. Siemionow M., Brzezicki G. Current techniques and concepts in peripheral nerve repair. Int. Rev. Neurobiol. 2009; 87: 141-72.
  5. Isaacs J. Treatment of acute peripheral nerve injuries: current concepts. Journal of Hand Surgery 2010; 35: 491-7.
  6. Moskow J., Ferrigno B., Mistry N. et al. Review: Bioengineering approach for the repair and regeneration of peripheral nerve. Bioactive Materials 2018; 4(1): 107-13.
  7. Yixia Y., Binbin L., Qiongjiao Y. et al. Promotion of peripheral nerve regeneration and prevention of neuroma formation by PRGD/PDLLA/pTCP conduit: report of two cases. Regenerative Biomaterials 2015; 2(2): 119-24.
  8. Wilson Z., Ray M.D., Susan E. et al. Management of nerve gaps: Autografts, allografts, nervetransfers, and end-to-side neurorrhaphy. Experimental Neurology 2010; 223(1): 77-85.
  9. Bozkurt A., van Neerven S.G., Claeys K.G. et al. The proximal medial sural nerve biopsy model: a standardised and reproducible baseline clinical model for the translational evaluation of bioengineered nerve guides. BioMed Research International 2014; 2014: 121452.
  10. Haroon K., Taher T., Alam S. et al. Nerve Anastomosis-our Experience of Thirteen Cases. Bangladesh Journal of Neurosurgery 2019; 9(1): 33-8.
  11. Boyd J.G., Gordon T. Neurotrophic factors and their receptors in axonal regeneration and functional recovery after peripheral nerve injury. Molecular Neurobiology 2003; 27(3): 277-323.
  12. Terenghi G., Hart A., Wiberg M.J. The nerve injury and the dying neurons: diagnosis and prevention. Journal of Hand Surgery 2011; 36(9): 730-4.
  13. Spanholtz J., Preijers F., Tordoir M. et al. Clinical-Grade Generation of Active NK Cells from Cord Blood Hematopoietic Progenitor Cells for Immunotherapy Using a Closed-System Culture Process. PLoS ONE 2011; 6(6): e20740.
  14. Xia B., Lv Y. Dual-delivery of VEGF and NGF by emulsion electros-punna no fibrous scaffold for peripheral nerve regeneration. Mater. Sci. Eng. 2018; 82: 253-64.
  15. Matthias D., Hans G.M., Carsten T. VEGF Signaling Regulates Cofilin and the Arp2/3-complex within the Axonal Growth Cone. Curr. Neurovasc. Res. 2015; 12(3): 293-307.
  16. Grothe C., Haastert K., Jungnickel J. Physiological function and putative therapeutic impact of the FGF-2 system in peripheral nerve regeneration - lessons from in vivo studies in mice and rats. Brain Res. Rev. 2006; 51: 293-9.
  17. Giannaccini M., Calatayud M.P., Poggetti A. et al. Magnetic nanoparticles for efficient delivery of growth factors: stimulation of peripheral nerve regeneration. Adv. Healthc. Mater. 2017; 6(7).
  18. Muratori L., Gnavi S., Fregnan F. et al. Evaluation of Vascular Endothelial Growth Factor (VEGF) and its family member expression after peripheral nerve regeneration and denervation. Anat. Rec. 2018; 301: 1646-56.
  19. Zor F., Deveci M., Kilic A. et al. Effect of VEGF gene therapy and hyaluronic acid film sheath on peripheral nerve regeneration. Microsurgery 2014; 34: 209-16.
  20. Guaiquil V.H., Pan Z., Karagianni N. et al. VEGF-B selectively regenerates injured peripheral neurons and restores sensory and trophic functions. PNAS USA 2014; 111: 17272-7.
  21. Hobson M.I., Green C.J., Terenghi G. VEGF enhances intraneural angiogenesis and improves nerve regeneration after axotomy. J. Anat. 2000; 197: 591-605.
  22. Stilhano R.S., Martins L., Ingham S. et al. Gene and cell therapy for muscle regeneration. Curr. Rev. Musculoskelet. Med. 2015; 8(2): 182-7.
  23. Hoyng S.A., de Winter F., Tannemaat M.R. et al. Gene therapy and peripheral nerve repair: a perspective. Front. Mol. Neurosci. 2015; 8: 32.
  24. Masgutov R.F., Masgutova G.A., Zhuravleva M.N. et al. Human adipose-derived stem cells stimulate neuroregeneration. Clinical and Experimental Medicine 2016; 16(3): 451-61.
  25. Masgutov R., Masgutova G., Mullakhmetova A. et al. Adipose-Derived Mesenchymal Stem Cells Applied in Fibrin Glue Stimulate Peripheral Nerve Regeneration. Front. Med. (Lausanne) 2019; 6: 68.
  26. Solovyeva V.V., Salafutdinov 1.1., Tazetdinova L.G. et al. Genetic Modification of Adipose Derived Stem Cells with Recombinant Plasmid DNA pBud-VEGF-FGF2 Results in Increased of IL-8 and MCP-1 Secretion. Journal Of Pure & Applied Microbiology 2014; 8: 523-8.
  27. de Medinaceli L., DeRenzo E., Wyatt R.J. Rat sciatic functional index data management system with digitized input. Computers and Biomedical Research 1984; 17: 92-185.
  28. Masgutov R., Masgutova G., Mukhametova L. et al. Allogenic Adipose Derived Stem Cells Transplantation Improved Sciatic Nerve Regeneration in Rats: Autologous Nerve Graft Model. Front. Pharmacol. 2018; 9: 86.
  29. Hussain G., Wang J., Rasul A. et al. Current Status of Therapeutic Approaches against Peripheral Nerve Injuries: A Detailed Story from Injury to Recovery. Int. J. Biol. Sci. 2020; 16(1): 116-34.
  30. Fathi S.S., Zaminy A. Stem cell therapy for nerve injury. World J. Stem Cells 2017; 9(9): 144-51.
  31. Jiang B.G., Han N., Rao F. et al. Advance of Peripheral Nerve Injury Repair and Reconstruction. Chin. Med. J. (Engl) 2017; 130(24): 2996-8.
  32. Caillaud M., Richard L., Vallat J.M. et al. Peripheral nerve regeneration and intraneural revascularization. Neural. Regen. Res. 2019; 14(1): 24-33.
  33. Chen S., Chen Z., Dai H. et al. Repair, protection and regeneration of peripheral nerve injury. Neural. Regen. Res. 2015; 10(11): 1777-98.
  34. Fukui K. Reactive oxygen species induce neurite degeneration before induction of cell death. Journal of clinical biochemistry and nutrition 2016; 59(3): 155-9.
  35. Wang Z.G., Wang Y., Huang, Y. et al. bFGF regulates autophagy and ubiquitinated protein accumulation induced by myocardial ischemia/reperfusion via the activation of the PI3K/Akt/mTOR pathway. Scientific reports 2015; 5(1): 1-12.
  36. Menorca R.M., Fussell T.S., Elfar J.C. Nerve physiology: mechanisms of injury and recovery. Hand Clin. 2013; 29(3): 317-30.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Эко-Вектор, 2020



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах