Results of a comparative valuation of the efficiency of using the plasmid construct pBud-VEGF165-FGF2 in models of autograft of the sciatic nerve defect and tubulation with the NeuraGen® collagen tube



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Traumatic injuries of peripheral nerves lead to profound disability in patients with partial or total loss of limb function. There remains the question about the use of technologies for detecting defects of the peripheral nerve with concurrent of its regeneration. In the study it has been investigated the effect of the gene-therapeutic plasmid construct pBud-VEGF165-FGF2 with various methods of overcoming 5 mm diastasis of the sciatic nerve: nerve autograft and tubulation with the NeuraGen® tube. In the study groups, assessment of sciatic nerve regeneration was based on functional and morphometric parameters. Direct injection of plasmid pBud-VEGF165-FGF2 stimulates regeneration and restoration of motor function in both groups, but with different efficacy. Comparative analysis of nerve defect replacement in combination with direct gene therapy showed the most effective approach with autologous insertion replacement by comparison to the NeuraGen. Thus, on the basis of the obtained data, we can assert that nerve autograft of the peripheral nerve remains the "gold standard” and provides the best hope of research in combination with the use of various regeneration stimulants.

Full Text

Restricted Access

About the authors

R. F Masgutov

Kazan (Volga region) Federal University; Republican Clinical Hospital, Kazan

G. A Masgutova

Kazan (Volga region) Federal University

L. R Mukhametova

Kazan (Volga region) Federal University

K. F Idrisova

Kazan (Volga region) Federal University

A. F Mullakhmetova

Kazan (Volga region) Federal University

V. Y Syromiatnikova

Kazan (Volga region) Federal University

A. A Bogov

Republican Clinical Hospital, Kazan

I. I Salafutdinov

Kazan (Volga region) Federal University

S. S Arkhipova

Kazan (Volga region) Federal University

R. Z Salikhov

Republican Clinical Hospital, Kazan

A. A Rizvanov

Kazan (Volga region) Federal University

References

  1. Roberto S.M., Bastos D., Mario G.S. et al. Traumatic injuries of peripheral nerves: a review with emphasis on surgical indication. Arq. Neuropsiquiatr. 2013; 71(10): 811-4.
  2. Patel N.P., Lyon K.A., Huang J.H. An update-tissue engineered nerve grafts for the repair of peripheral nerve injuries. Neural Regeneration Research 2018; 13(5): 764-74.
  3. Bryan J.P., Gordon T., Joseph R.L. et al. Biomedical Engineering Strategies for Peripheral Nerve Repair: Surgical Applications, State of the Art, and Future Challenges. Biomedical Engineering 2011; 39(2): 81-124.
  4. Siemionow M., Brzezicki G. Current techniques and concepts in peripheral nerve repair. Int. Rev. Neurobiol. 2009; 87: 141-72.
  5. Isaacs J. Treatment of acute peripheral nerve injuries: current concepts. Journal of Hand Surgery 2010; 35: 491-7.
  6. Moskow J., Ferrigno B., Mistry N. et al. Review: Bioengineering approach for the repair and regeneration of peripheral nerve. Bioactive Materials 2018; 4(1): 107-13.
  7. Yixia Y., Binbin L., Qiongjiao Y. et al. Promotion of peripheral nerve regeneration and prevention of neuroma formation by PRGD/PDLLA/pTCP conduit: report of two cases. Regenerative Biomaterials 2015; 2(2): 119-24.
  8. Wilson Z., Ray M.D., Susan E. et al. Management of nerve gaps: Autografts, allografts, nervetransfers, and end-to-side neurorrhaphy. Experimental Neurology 2010; 223(1): 77-85.
  9. Bozkurt A., van Neerven S.G., Claeys K.G. et al. The proximal medial sural nerve biopsy model: a standardised and reproducible baseline clinical model for the translational evaluation of bioengineered nerve guides. BioMed Research International 2014; 2014: 121452.
  10. Haroon K., Taher T., Alam S. et al. Nerve Anastomosis-our Experience of Thirteen Cases. Bangladesh Journal of Neurosurgery 2019; 9(1): 33-8.
  11. Boyd J.G., Gordon T. Neurotrophic factors and their receptors in axonal regeneration and functional recovery after peripheral nerve injury. Molecular Neurobiology 2003; 27(3): 277-323.
  12. Terenghi G., Hart A., Wiberg M.J. The nerve injury and the dying neurons: diagnosis and prevention. Journal of Hand Surgery 2011; 36(9): 730-4.
  13. Spanholtz J., Preijers F., Tordoir M. et al. Clinical-Grade Generation of Active NK Cells from Cord Blood Hematopoietic Progenitor Cells for Immunotherapy Using a Closed-System Culture Process. PLoS ONE 2011; 6(6): e20740.
  14. Xia B., Lv Y. Dual-delivery of VEGF and NGF by emulsion electros-punna no fibrous scaffold for peripheral nerve regeneration. Mater. Sci. Eng. 2018; 82: 253-64.
  15. Matthias D., Hans G.M., Carsten T. VEGF Signaling Regulates Cofilin and the Arp2/3-complex within the Axonal Growth Cone. Curr. Neurovasc. Res. 2015; 12(3): 293-307.
  16. Grothe C., Haastert K., Jungnickel J. Physiological function and putative therapeutic impact of the FGF-2 system in peripheral nerve regeneration - lessons from in vivo studies in mice and rats. Brain Res. Rev. 2006; 51: 293-9.
  17. Giannaccini M., Calatayud M.P., Poggetti A. et al. Magnetic nanoparticles for efficient delivery of growth factors: stimulation of peripheral nerve regeneration. Adv. Healthc. Mater. 2017; 6(7).
  18. Muratori L., Gnavi S., Fregnan F. et al. Evaluation of Vascular Endothelial Growth Factor (VEGF) and its family member expression after peripheral nerve regeneration and denervation. Anat. Rec. 2018; 301: 1646-56.
  19. Zor F., Deveci M., Kilic A. et al. Effect of VEGF gene therapy and hyaluronic acid film sheath on peripheral nerve regeneration. Microsurgery 2014; 34: 209-16.
  20. Guaiquil V.H., Pan Z., Karagianni N. et al. VEGF-B selectively regenerates injured peripheral neurons and restores sensory and trophic functions. PNAS USA 2014; 111: 17272-7.
  21. Hobson M.I., Green C.J., Terenghi G. VEGF enhances intraneural angiogenesis and improves nerve regeneration after axotomy. J. Anat. 2000; 197: 591-605.
  22. Stilhano R.S., Martins L., Ingham S. et al. Gene and cell therapy for muscle regeneration. Curr. Rev. Musculoskelet. Med. 2015; 8(2): 182-7.
  23. Hoyng S.A., de Winter F., Tannemaat M.R. et al. Gene therapy and peripheral nerve repair: a perspective. Front. Mol. Neurosci. 2015; 8: 32.
  24. Masgutov R.F., Masgutova G.A., Zhuravleva M.N. et al. Human adipose-derived stem cells stimulate neuroregeneration. Clinical and Experimental Medicine 2016; 16(3): 451-61.
  25. Masgutov R., Masgutova G., Mullakhmetova A. et al. Adipose-Derived Mesenchymal Stem Cells Applied in Fibrin Glue Stimulate Peripheral Nerve Regeneration. Front. Med. (Lausanne) 2019; 6: 68.
  26. Solovyeva V.V., Salafutdinov 1.1., Tazetdinova L.G. et al. Genetic Modification of Adipose Derived Stem Cells with Recombinant Plasmid DNA pBud-VEGF-FGF2 Results in Increased of IL-8 and MCP-1 Secretion. Journal Of Pure & Applied Microbiology 2014; 8: 523-8.
  27. de Medinaceli L., DeRenzo E., Wyatt R.J. Rat sciatic functional index data management system with digitized input. Computers and Biomedical Research 1984; 17: 92-185.
  28. Masgutov R., Masgutova G., Mukhametova L. et al. Allogenic Adipose Derived Stem Cells Transplantation Improved Sciatic Nerve Regeneration in Rats: Autologous Nerve Graft Model. Front. Pharmacol. 2018; 9: 86.
  29. Hussain G., Wang J., Rasul A. et al. Current Status of Therapeutic Approaches against Peripheral Nerve Injuries: A Detailed Story from Injury to Recovery. Int. J. Biol. Sci. 2020; 16(1): 116-34.
  30. Fathi S.S., Zaminy A. Stem cell therapy for nerve injury. World J. Stem Cells 2017; 9(9): 144-51.
  31. Jiang B.G., Han N., Rao F. et al. Advance of Peripheral Nerve Injury Repair and Reconstruction. Chin. Med. J. (Engl) 2017; 130(24): 2996-8.
  32. Caillaud M., Richard L., Vallat J.M. et al. Peripheral nerve regeneration and intraneural revascularization. Neural. Regen. Res. 2019; 14(1): 24-33.
  33. Chen S., Chen Z., Dai H. et al. Repair, protection and regeneration of peripheral nerve injury. Neural. Regen. Res. 2015; 10(11): 1777-98.
  34. Fukui K. Reactive oxygen species induce neurite degeneration before induction of cell death. Journal of clinical biochemistry and nutrition 2016; 59(3): 155-9.
  35. Wang Z.G., Wang Y., Huang, Y. et al. bFGF regulates autophagy and ubiquitinated protein accumulation induced by myocardial ischemia/reperfusion via the activation of the PI3K/Akt/mTOR pathway. Scientific reports 2015; 5(1): 1-12.
  36. Menorca R.M., Fussell T.S., Elfar J.C. Nerve physiology: mechanisms of injury and recovery. Hand Clin. 2013; 29(3): 317-30.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies