Participation of adhesion molecules in changing cell interactions during metastasis development



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The review summarizes current information about the role and significance of adhesion molecules in the process of tumor metastasis. For example, different tumors is shown that changes in the expression of adhesion molecules leads to disruption of the regulatory interactions in the processes of proliferation, cytodifferentiation and migration of tumor cells, enables the cascade of pathological processes leading to the colonization of other tumor cells remote from the tumor bodies. The phenomenology of tumor development and metastasis is shown. The participation of the main groups of adhesion molecules (cadherins, integrins, selectins, immunoglobulins and white blood cell homing receptors) at the stages of metastasis is considered. A violation of cadherin expression is accompanied by a decrease in the expression of integrins involved in the formation of hemidesmosomes, while a cascade of reactions develops that contributes to the development of an aggressive malignant phenotype, cells acquire an increased ability to migrate and invade, resulting in the appearance of a tumor in secondary foci. The role of immunoglobulins in the development of metastatic process has been studied in less detail than in cadherins and integrins. It was found that immunoglobulins are involved in the formation of resistance of tumor cells to proapoptotic signals. Immunoglobulins increase the expression of metalloproteinase genes involved in the degradation of the extracellular matrix, which is a factor in the initiation of metastasis. A correlation between increased selectin expression and increased metastasis is shown. An increase in the expression level of white blood cell homing receptors leads to an increase in the invasive potential of tumors. The results of the study of cell adhesion proteins serve as a fundamental basis for the development of methods of antitumor therapy. Over the past decades, a number of immunohistochemical protein detection reactions have become one of the diagnostic methods of cancer clinics. However, the role of cell adhesion molecules in ensuring the metastasis process, as well as their significance in the prognosis of the development of the tumor process and antitumor therapy, needs to be further studied.

Full Text

Restricted Access

About the authors

N. N Shevlyuk

Orenburg State Medical University

L. V Khalikova

Bashkir State Medical University

A. A Khalikov

Bashkir State Medical University

M. R Bakeev

Bashkir State Medical University

D. O Lipatov

Bashkir State Medical University

R. N Mustafin

Bashkir State Medical University

References

  1. Sahai E. Illuminating the metastatic process. Nat. Rev. Cancer 2007; 7(10): 737-49.
  2. Бочарова О.А., Карпова Р.В. Адгезия в биологии рака. Российский биотерапевтический журнал 2006; 5(3): 55-9.
  3. Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation. Cell 2011; 144(5): 646-74.
  4. Гельштейн В.И. Иммуноморфологический анализ опухолей человека с помощью моноклональных антител. Вестник РОНЦ им. Н.Н. Блохина 2003; 14(3): 37-41.
  5. Пальцева Е.М., Варламов А.В., Секачева М.И. и др. Влияние предоперационной лекарственной терапии на экспрессию молекул адгезии в метастазах колоректального рака в печени. Архив патологии 2015; 77(3): 10-6.
  6. Москвина Л.В., Андреева Ю.Ю., Франк Г.А. и др. Прогностическая значимость экспрессии молекул адгезии при несветлоклеточных вариантах почечно-клеточного рака. Архив патологии 2013; 75(4): 3-8.
  7. Абдуллаева Г.М., Анурова О.А., Лактионов К.П. и др. Прогностическое значение иммуногистохимического исследования молекул межклеточной адгезии и рецепторов эпидермального фактора роста Her-2/NEU при неэндометриоидных формах рака тела матки. Архив патологии 2012; 74(1): 12-5.
  8. Wong C.W., Dye D.E., Coombe D.R. The role of immunoglobulin superfamily cell adhesion molecules in cancer metastasis. Int. J. Cell Biol. 2012; 2012: 9.
  9. Janiszewska M., Primi M.C., Izard T. Cell adhesion in cancer: Beyond the migration of single cells. J. Biol. Chem. 2020; 295(8): 2495-505.
  10. Harjunpaa H., Asens M.L., Guenther C. et al. Cell Adhesion Molecules and Their Roles and Regulation in the Immune and Tumor Microenvironment. Front. Immunol. 2019; 10: 1078.
  11. Lambert A.W., Pattabiraman D.R., Weinberg R.A. Emerging Biological Principles of Metastasis. Cell 2017; 168(4): 670-91.
  12. Moh M.C., Shen S. The roles of cell adhesion molecules in tumor suppression and cell migration: a new paradox. Cell Adh. Migr. 2009; 3(4): 334-6.
  13. Makrilia N., Kollias A., Manolopoulos L. et al. Cell adhesion molecules: role and clinical significance in cancer. Cancer Invest. 2009; 27(10): 1023-37.
  14. Mui K.L., Chen C.S., Assoian R.K. The mechanical regulation of integrin-cadherin crosstalk organizes cells, signaling and forces. J. Cell Sci. 2016; 129(6): 1093-100.
  15. Колесник А.П., Шевченко А.И., Туманский В.А. и др. Влияние Е-кадхерина на прогноз немелкоклеточного рака лёгкого. Архив патологии 2013; 75(5): 30-3.
  16. Alberts B., Johnson A., Lewis J. et al. Molecular biology of the cell. 4th ed. New York: Garland Science; 2002.
  17. Freemont A.J., Hoyland J.A. Cell adhesion molecules. Clin. Mol. Pathol. 1996; 49(6): 321-30.
  18. Засадкевич Ю.М., Бриллиант А.А., Сазонов С.В. Роль кадгеринов в норме и при развитии рака молочной железы. Архив патологии 2015; 77(3): 57-64.
  19. Чипышева Т.А., Гельштейн В.И., Ермилова В.Д. и др. Экспрессия молекул межклеточной адгезии Е-кадхерина и В-катенина в инфильтративных карциномах молочной железы. Архив патологии 2003; 65(3): 3-7.
  20. Чипышева Т.А., Ермилова Е.Д., Вишневская Я.В. и др. Экспрессия Е-кадгерина как дифференциально-диагностический тест для дольковых инфильтративных раков молочной железы. Архив патологии 2005; 67(6): 24-7.
  21. Shapiro L., Weis W.I. Structure and biochemistry of cadherins and catenins. Cold Spring Harb. Perspect. Biol. 2009; 1(3): a003053.
  22. Бриллиант Ю.М., Бриллиант А.А., Сазонов С.В. Эпителиальные кадгерины и ассоциированные с ними молекулы при инвазивном дольковом раке молочной железы. Архив патологии 2017; 79(1): 12-8.
  23. Krudsen K.A., Wheelock M. Cadherins and the Mammary gland. J. Cell. Biochem. 2005; 95(3): 488-96.
  24. Kalluri R., Weinberg R.A. The basics of epithelal-mesenchymal transition. J. Clin. Invest. 2009; 119(6): 1420-28.
  25. Pastushenko I., Brisebarre A., Sifrim A. et al. Identification of the tumour transition states occurring during EMT. Nature 2018; 556(7702): 463-8.
  26. Репин В.С., Сабурина И.Н. Обратимые эпителио-мезенхимальные трансформации клеток в эмбриогенезе и постнатальном обновлении тканей. Клеточная трансплантология и тканевая инженерия 2006; 1(3): 64-72.
  27. Wheelock M.J., Shintani Y., Maeda M. et al. Cadherin switching. J. Cell Sci. 2008; 121(6): 727-35.
  28. Mrozik K.M., Blaschuk O.W., Cheong C.M. et al. N-cadherin in cancer metastasis, its emerging role in haematological malignancies and potential as a therapeutic target in cancer. BMC Cancer 2018; 18(1): 939.
  29. Kroger C., Afeyan A., Mraz J. et al. Acquisition of a hybrid E/M. state is essential for tumorigenicity of basal breast cancer cells. PNAS 2019; 116(23): 11553-4.
  30. Padmanaban V., Krol I., Suhail Y. et al. E-cadherin is required for metastasis in multiple models of breast cancer. Nature 2019; 573(7774): 439-44.
  31. Hamidi H., Ivaska J. Every step of the way: integrins in cancer progression and metastasis. Nat. Rev. Cancer 2018; 18(9): 533-48.
  32. Ginsberg M.H. Integrin activation. BMB Rep. 2014; 47(12): 655-9.
  33. Hynes R.O. Integrins: bidirectional, allosteric signaling machines. Cell 2002; 110(6): 673-87.
  34. Burridge K., Chrzanowska-Wodnicka M. Focal adhesions, contractility, and signaling. Annu. Rev. Cell Dev. Biol. 1996; 12: 463-518.
  35. Aksorn N., Chanvorachote P. Integrin as a Molecular Target for Anticancer Approaches in Lung Cancer. Anticancer Res. 2019; 39(2): 541-8.
  36. Humphries J.D., Byron A., Humphries M.J. Integrin ligands at a glance. J. Cell Sci. 2006; 119(19): 3901-3.
  37. Arruda Macedo J.K., Fox J.W., de Souza Castro M. Disintegrins from snake venoms and their applications in cancer research and therapy. Curr. Protein Pept. Sci. 2015; 16(6): 532-48.
  38. Hussein H.A., Walker L.R., Abdel-Raouf U.M. et al. Beyond RGD: virus interactions with integrins. Arch. Virol. 2015; 160(11): 2669-81.
  39. Belvindrah R., Hankel S., Walker J. et al. Beta1 integrins control the formation of cell chains in the adult rostral migratory stream. J. Neurosci. 2007; 27(10): 2704-17.
  40. Munshi H.G., Stack M.S. Reciprocal interactions between adhesion receptor signaling and MMP regulation. Cancer Metastasis Rev. 2006; 25(1): 45-56.
  41. Gaggioli C., Hooper S., Hidalgo-Carcedo C. et al. Fibroblastled collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat. Cell Biol. 2007; 9(12): 1392-400.
  42. Attieh Y., Vignjevic D.M. The hallmarks of CAFs in cancer invasion. Eur. J. Cell Biol. 2016; 95(11): 493-502.
  43. Attieh Y., Clark A.G., Grass C. et al. Cancer-associated fibroblasts lead tumor invasion through integrin-p3-dependent fibronectin assembly. J. Cell Biol. 2017; 216(11): 3509-20.
  44. Cerri P., Chiarygi P. Cancer-associated-fibroblasta and tumour cells: A diabolic liaison driving cancer progression. Cancer Metastasis Rev. 2012; 31(1-2): 195-208.
  45. Erdogan B., Ao M., White L.M. et al. Cancer-associated fibroblasts promote directional cancer cell migration by aligning fibronectin. J. Cell Biol. 2017; 216(11): 3799-816.
  46. Paul N.R., Jacquemet G., Caswell P.T. Endocytic Trafficking of integrins in cell migration. Curr. Biol. 2015; 25: 1092.
  47. White D.P., Caswell P.T., Norman J.C. Alpha -5beta-3 and alpha-5beta-1 integrin recycling pathways dictate downstream Rho kinase signaling to regulate persistent cell migration. J. Cell Biol. 2007; 177(3): 515-25.
  48. Jacquemet G., Green D.M., Bridgewater R.E. et al. RCP-driven a5p1 recycling suppresses Rac and promotes RhoA activity via the RacGAP1-IQGAP1 complex. J. Cell Biol. 2013; 202(6): 917-35.
  49. Hamidi H., Ivaska J. Every step of the way: integrins in cancer progression and metastasis. Nat. Rev. Cancer 2018; 18(9): 533-48.
  50. Holash J., Maisonpierre P.C., Compton D. et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 1999; 284(5422): 1994-8.
  51. Hakanpaa L., Sipila T., Leppanen V.M. et al. Endothelial destabilization by angiopoietin-2 via integrin p1 activation. Nat. Commun. 2015; 6: 5962.
  52. Cao Y., Hoeppner L.H., Bach S. et al. Neuropilin-2 promotes extravasation and metastasis by interacting with endothelial a5 integrin. Cancer Res. 2013; 73(14): 4579-90.
  53. Dermody T.S., Kirchner E., Guglielmi K.M. et al. Immunoglobulin superfamily virus receptors and the evolution of adaptive immunity. PLoS Pathog. 2009; 5(11): e1000481.
  54. Friedl P., Gilmour D. Collective cell migration in morphogenesis, regeneration and cancer. Nat. Rev. Mol. Cell Biol. 2009; 10: 445-57.
  55. Goh A.M., Coffill C.R., Lane D.P. The role of mutant p53 in human cancer. J. Pathol. 2011; 223: 116-26.
  56. Nikitenko L.L. Vascular endothelium in cancer. Cell Tissue Res. 2009; 335(1): 223-40.
  57. Shibuya M., Claesson-Welsh L. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Experimental Cell Research 2006; 312(5): 549-60.
  58. Semenza G.L. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 2003; 3(10): 721-32.
  59. Kim I., Moon S.O., Kim S.H. et al. Vascular endothelial growth factor expression of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin through nuclear factor-kappa B. activation in endothelial cells. J. Biol. Chem. 2001; 276(10): 7614-20.
  60. Enciso J.M., Gratzinger D., Camenisch T.D. et al. Elevated glucose inhibits VEGF-A-mediated endocardial cushion formation: modulation by PECAM-1 and MMP-2. J. Cell Biol. 2003; 160(4): 605-15.
  61. Deng C., Zhang D., Shan S. et al. Angiogenic effect of intercellular adhesion molecule-1. J. Huazhong Univ. Sci. Technolog. Med. Sci. 2007; 27(1): 9-12.
  62. Ding Y.B., Chen G.Y., Xia J.G. et al. Association of VCAM-1 overexpression with oncogenesis, tumor angiogenesis and metastasis of gastric carcinoma. World J. Gastroenterol. 2003; 9(7): 1409-14.
  63. Park S., Di Maio T.A., Scheef E.A. et al. PECAM-1 regulates proangio-genic properties of endothelial cells through modulation of cell-cell and cell-matrix interactions. Am.J. Physiol. Cell Physiol. 2010; 299(6): 1468-84.
  64. Hofmann U.B., Houben R., Brocker E.B. et al. Role of matrix metallo-proteinases in melanoma cell invasion. Biochimie 2005; 87(3-4): 307-14.
  65. Hua H., Li M., Luo T. et al. Matrix metalloproteinases in tumorigenesis: an evolving paradigm. Cell. Mol. Life Sci. 2011; 68(23): 3853-68.
  66. Xie S., Price J.E., Luca M. et al. Dominant-negative CREB inhibits tumor growth and metastasis of human melanoma cells. Oncogene 1997; 15(17): 2069-75.
  67. Borsig L. Selectins in cancer immunity. Glycobiology 2018; 28(9): 648-55.
  68. Kansas G.S. Selectins and their ligands: Current concepts and controversies. Blood 1996; 88(9): 3259-87.
  69. Ley K. The role of selectins in inflammation and disease. Trends Mol. Med. 2003; 9: 263-8.
  70. Laubli H., Borsig L. Selectins promote tumor metastasis. Semin. Cancer Biol. 2010; 20(3): 169-77.
  71. Zarbock A., Muller H., Kuwano Y. et al. PSGL-1-dependent myeloid leukocyte activation. J. Leukoc. Biol. 2009; 86(5): 1119-24.
  72. Paschos K.A., Canovas D., Bird N.C. The engagement of selectins and their ligands in colorectal cancer liver metastases. J. Cell. Mol. Med. 2010; 14(1-2): 165-74.
  73. Witz I.P. The selectin-selectin ligand axis in tumor progression. Cancer Metastasis Rev. 2008; 27(1): 19-30.
  74. Laubli H., Stevenson J.L., Varki A. et al. L-selectin facilitation of metastasis involves temporal induction of Fut7-dependent ligands at sites of tumor cell arrest. Cancer Res. 2006; 66(3): 1536-42.
  75. Iczkowski K.A. Cell adhesion molecule CD44: its functional roles in prostate cancer. Am.J. Transl. Res. 2010; 3(1): 1-7.
  76. Данилова Н.В., Андреева Ю.Ю., Завалишина Л.Э. и др. Маркеры стромальной инвазии при фоновых и предраковых изменениях железистого эпителия и аденокарциноме шейки матки. Архив патологии 2012; 74(4): 28-34.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies