Участие молекул адгезии в изменении взаимодействий клеток при развитии метастазирования



Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

В обзоре обобщены современные сведения о роли и значимости молекул адгезии в процессе метастазирования опухолей. На примере различных опухолей показано, что изменение экспрессии генов белков адгезии нарушает регуляторные взаимодействия в процессах пролиферации, дифференцировки и миграции опухолевых клеток, обеспечивает включение каскада патологических процессов, приводящих к колонизации опухолевыми клетками других отдалённых от опухоли органов. Описана феноменология развития и метастазирования опухолей. Рассмотрено участие основных групп молекул адгезии (кадгерины, интегрины, селектины, иммуноглобулины и хоуминговые рецепторы лейкоцитов) на этапах метастазирования. Нарушение синтеза кадгеринов сопровождается снижением уровней интегринов, участвующих в формировании гемидесмосом, что вызывает каскад реакций, способствующий развитию агрессивного злокачественного фенотипа, клетки приобретают повышенную способность к миграции и инвазии, результатом чего является появление во вторичных очагах опухоли. Роль иммуноглобулинов при развитии метастатического процесса исследована менее подробно, чем у кадгеринов и интегринов. Выявлено, что иммуноглобулины участвуют в формировании резистентности опухолевых клеток к проапоптозным сигналам. Иммуноглобулины увеличивают экспрессию генов металлопротеиназ, участвующих в деградации экстрацеллюляного матрикса, что является фактором инициации метастазирования. Показана корреляция между повышением концентрации селектинов и усилением метастазирования. Повышение уровней хоуминговых рецепторов лейкоцитов приводит к увеличению инвазивного потенциала опухолей. Результаты исследования белков клеточной адгезии выступают в качестве фундаментальной основы при разработке методов противоопухолевой терапии. За последние десятилетия иммуногистохимические реакции выявления белков, участвующих в канцерогенезе, вошли в число диагностических методов онкологических клиник. Однако роль молекул клеточной адгезии в обеспечении процесса метастазирования, а также их значение в прогнозах развития опухолевого процесса и противоопухолевой терапии нуждаются в дальнейшем изучении.

Полный текст

Доступ закрыт

Об авторах

Н. Н Шевлюк

Оренбургский государственный медицинский университет

Л. В Халикова

Башкирский государственный медицинский университет

А. А Халиков

Башкирский государственный медицинский университет

М. Р Бакеев

Башкирский государственный медицинский университет

Д. О Липатов

Башкирский государственный медицинский университет

Р. Н Мустафин

Башкирский государственный медицинский университет

Список литературы

  1. Sahai E. Illuminating the metastatic process. Nat. Rev. Cancer 2007; 7(10): 737-49.
  2. Бочарова О.А., Карпова Р.В. Адгезия в биологии рака. Российский биотерапевтический журнал 2006; 5(3): 55-9.
  3. Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation. Cell 2011; 144(5): 646-74.
  4. Гельштейн В.И. Иммуноморфологический анализ опухолей человека с помощью моноклональных антител. Вестник РОНЦ им. Н.Н. Блохина 2003; 14(3): 37-41.
  5. Пальцева Е.М., Варламов А.В., Секачева М.И. и др. Влияние предоперационной лекарственной терапии на экспрессию молекул адгезии в метастазах колоректального рака в печени. Архив патологии 2015; 77(3): 10-6.
  6. Москвина Л.В., Андреева Ю.Ю., Франк Г.А. и др. Прогностическая значимость экспрессии молекул адгезии при несветлоклеточных вариантах почечно-клеточного рака. Архив патологии 2013; 75(4): 3-8.
  7. Абдуллаева Г.М., Анурова О.А., Лактионов К.П. и др. Прогностическое значение иммуногистохимического исследования молекул межклеточной адгезии и рецепторов эпидермального фактора роста Her-2/NEU при неэндометриоидных формах рака тела матки. Архив патологии 2012; 74(1): 12-5.
  8. Wong C.W., Dye D.E., Coombe D.R. The role of immunoglobulin superfamily cell adhesion molecules in cancer metastasis. Int. J. Cell Biol. 2012; 2012: 9.
  9. Janiszewska M., Primi M.C., Izard T. Cell adhesion in cancer: Beyond the migration of single cells. J. Biol. Chem. 2020; 295(8): 2495-505.
  10. Harjunpaa H., Asens M.L., Guenther C. et al. Cell Adhesion Molecules and Their Roles and Regulation in the Immune and Tumor Microenvironment. Front. Immunol. 2019; 10: 1078.
  11. Lambert A.W., Pattabiraman D.R., Weinberg R.A. Emerging Biological Principles of Metastasis. Cell 2017; 168(4): 670-91.
  12. Moh M.C., Shen S. The roles of cell adhesion molecules in tumor suppression and cell migration: a new paradox. Cell Adh. Migr. 2009; 3(4): 334-6.
  13. Makrilia N., Kollias A., Manolopoulos L. et al. Cell adhesion molecules: role and clinical significance in cancer. Cancer Invest. 2009; 27(10): 1023-37.
  14. Mui K.L., Chen C.S., Assoian R.K. The mechanical regulation of integrin-cadherin crosstalk organizes cells, signaling and forces. J. Cell Sci. 2016; 129(6): 1093-100.
  15. Колесник А.П., Шевченко А.И., Туманский В.А. и др. Влияние Е-кадхерина на прогноз немелкоклеточного рака лёгкого. Архив патологии 2013; 75(5): 30-3.
  16. Alberts B., Johnson A., Lewis J. et al. Molecular biology of the cell. 4th ed. New York: Garland Science; 2002.
  17. Freemont A.J., Hoyland J.A. Cell adhesion molecules. Clin. Mol. Pathol. 1996; 49(6): 321-30.
  18. Засадкевич Ю.М., Бриллиант А.А., Сазонов С.В. Роль кадгеринов в норме и при развитии рака молочной железы. Архив патологии 2015; 77(3): 57-64.
  19. Чипышева Т.А., Гельштейн В.И., Ермилова В.Д. и др. Экспрессия молекул межклеточной адгезии Е-кадхерина и В-катенина в инфильтративных карциномах молочной железы. Архив патологии 2003; 65(3): 3-7.
  20. Чипышева Т.А., Ермилова Е.Д., Вишневская Я.В. и др. Экспрессия Е-кадгерина как дифференциально-диагностический тест для дольковых инфильтративных раков молочной железы. Архив патологии 2005; 67(6): 24-7.
  21. Shapiro L., Weis W.I. Structure and biochemistry of cadherins and catenins. Cold Spring Harb. Perspect. Biol. 2009; 1(3): a003053.
  22. Бриллиант Ю.М., Бриллиант А.А., Сазонов С.В. Эпителиальные кадгерины и ассоциированные с ними молекулы при инвазивном дольковом раке молочной железы. Архив патологии 2017; 79(1): 12-8.
  23. Krudsen K.A., Wheelock M. Cadherins and the Mammary gland. J. Cell. Biochem. 2005; 95(3): 488-96.
  24. Kalluri R., Weinberg R.A. The basics of epithelal-mesenchymal transition. J. Clin. Invest. 2009; 119(6): 1420-28.
  25. Pastushenko I., Brisebarre A., Sifrim A. et al. Identification of the tumour transition states occurring during EMT. Nature 2018; 556(7702): 463-8.
  26. Репин В.С., Сабурина И.Н. Обратимые эпителио-мезенхимальные трансформации клеток в эмбриогенезе и постнатальном обновлении тканей. Клеточная трансплантология и тканевая инженерия 2006; 1(3): 64-72.
  27. Wheelock M.J., Shintani Y., Maeda M. et al. Cadherin switching. J. Cell Sci. 2008; 121(6): 727-35.
  28. Mrozik K.M., Blaschuk O.W., Cheong C.M. et al. N-cadherin in cancer metastasis, its emerging role in haematological malignancies and potential as a therapeutic target in cancer. BMC Cancer 2018; 18(1): 939.
  29. Kroger C., Afeyan A., Mraz J. et al. Acquisition of a hybrid E/M. state is essential for tumorigenicity of basal breast cancer cells. PNAS 2019; 116(23): 11553-4.
  30. Padmanaban V., Krol I., Suhail Y. et al. E-cadherin is required for metastasis in multiple models of breast cancer. Nature 2019; 573(7774): 439-44.
  31. Hamidi H., Ivaska J. Every step of the way: integrins in cancer progression and metastasis. Nat. Rev. Cancer 2018; 18(9): 533-48.
  32. Ginsberg M.H. Integrin activation. BMB Rep. 2014; 47(12): 655-9.
  33. Hynes R.O. Integrins: bidirectional, allosteric signaling machines. Cell 2002; 110(6): 673-87.
  34. Burridge K., Chrzanowska-Wodnicka M. Focal adhesions, contractility, and signaling. Annu. Rev. Cell Dev. Biol. 1996; 12: 463-518.
  35. Aksorn N., Chanvorachote P. Integrin as a Molecular Target for Anticancer Approaches in Lung Cancer. Anticancer Res. 2019; 39(2): 541-8.
  36. Humphries J.D., Byron A., Humphries M.J. Integrin ligands at a glance. J. Cell Sci. 2006; 119(19): 3901-3.
  37. Arruda Macedo J.K., Fox J.W., de Souza Castro M. Disintegrins from snake venoms and their applications in cancer research and therapy. Curr. Protein Pept. Sci. 2015; 16(6): 532-48.
  38. Hussein H.A., Walker L.R., Abdel-Raouf U.M. et al. Beyond RGD: virus interactions with integrins. Arch. Virol. 2015; 160(11): 2669-81.
  39. Belvindrah R., Hankel S., Walker J. et al. Beta1 integrins control the formation of cell chains in the adult rostral migratory stream. J. Neurosci. 2007; 27(10): 2704-17.
  40. Munshi H.G., Stack M.S. Reciprocal interactions between adhesion receptor signaling and MMP regulation. Cancer Metastasis Rev. 2006; 25(1): 45-56.
  41. Gaggioli C., Hooper S., Hidalgo-Carcedo C. et al. Fibroblastled collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat. Cell Biol. 2007; 9(12): 1392-400.
  42. Attieh Y., Vignjevic D.M. The hallmarks of CAFs in cancer invasion. Eur. J. Cell Biol. 2016; 95(11): 493-502.
  43. Attieh Y., Clark A.G., Grass C. et al. Cancer-associated fibroblasts lead tumor invasion through integrin-p3-dependent fibronectin assembly. J. Cell Biol. 2017; 216(11): 3509-20.
  44. Cerri P., Chiarygi P. Cancer-associated-fibroblasta and tumour cells: A diabolic liaison driving cancer progression. Cancer Metastasis Rev. 2012; 31(1-2): 195-208.
  45. Erdogan B., Ao M., White L.M. et al. Cancer-associated fibroblasts promote directional cancer cell migration by aligning fibronectin. J. Cell Biol. 2017; 216(11): 3799-816.
  46. Paul N.R., Jacquemet G., Caswell P.T. Endocytic Trafficking of integrins in cell migration. Curr. Biol. 2015; 25: 1092.
  47. White D.P., Caswell P.T., Norman J.C. Alpha -5beta-3 and alpha-5beta-1 integrin recycling pathways dictate downstream Rho kinase signaling to regulate persistent cell migration. J. Cell Biol. 2007; 177(3): 515-25.
  48. Jacquemet G., Green D.M., Bridgewater R.E. et al. RCP-driven a5p1 recycling suppresses Rac and promotes RhoA activity via the RacGAP1-IQGAP1 complex. J. Cell Biol. 2013; 202(6): 917-35.
  49. Hamidi H., Ivaska J. Every step of the way: integrins in cancer progression and metastasis. Nat. Rev. Cancer 2018; 18(9): 533-48.
  50. Holash J., Maisonpierre P.C., Compton D. et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 1999; 284(5422): 1994-8.
  51. Hakanpaa L., Sipila T., Leppanen V.M. et al. Endothelial destabilization by angiopoietin-2 via integrin p1 activation. Nat. Commun. 2015; 6: 5962.
  52. Cao Y., Hoeppner L.H., Bach S. et al. Neuropilin-2 promotes extravasation and metastasis by interacting with endothelial a5 integrin. Cancer Res. 2013; 73(14): 4579-90.
  53. Dermody T.S., Kirchner E., Guglielmi K.M. et al. Immunoglobulin superfamily virus receptors and the evolution of adaptive immunity. PLoS Pathog. 2009; 5(11): e1000481.
  54. Friedl P., Gilmour D. Collective cell migration in morphogenesis, regeneration and cancer. Nat. Rev. Mol. Cell Biol. 2009; 10: 445-57.
  55. Goh A.M., Coffill C.R., Lane D.P. The role of mutant p53 in human cancer. J. Pathol. 2011; 223: 116-26.
  56. Nikitenko L.L. Vascular endothelium in cancer. Cell Tissue Res. 2009; 335(1): 223-40.
  57. Shibuya M., Claesson-Welsh L. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Experimental Cell Research 2006; 312(5): 549-60.
  58. Semenza G.L. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 2003; 3(10): 721-32.
  59. Kim I., Moon S.O., Kim S.H. et al. Vascular endothelial growth factor expression of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin through nuclear factor-kappa B. activation in endothelial cells. J. Biol. Chem. 2001; 276(10): 7614-20.
  60. Enciso J.M., Gratzinger D., Camenisch T.D. et al. Elevated glucose inhibits VEGF-A-mediated endocardial cushion formation: modulation by PECAM-1 and MMP-2. J. Cell Biol. 2003; 160(4): 605-15.
  61. Deng C., Zhang D., Shan S. et al. Angiogenic effect of intercellular adhesion molecule-1. J. Huazhong Univ. Sci. Technolog. Med. Sci. 2007; 27(1): 9-12.
  62. Ding Y.B., Chen G.Y., Xia J.G. et al. Association of VCAM-1 overexpression with oncogenesis, tumor angiogenesis and metastasis of gastric carcinoma. World J. Gastroenterol. 2003; 9(7): 1409-14.
  63. Park S., Di Maio T.A., Scheef E.A. et al. PECAM-1 regulates proangio-genic properties of endothelial cells through modulation of cell-cell and cell-matrix interactions. Am.J. Physiol. Cell Physiol. 2010; 299(6): 1468-84.
  64. Hofmann U.B., Houben R., Brocker E.B. et al. Role of matrix metallo-proteinases in melanoma cell invasion. Biochimie 2005; 87(3-4): 307-14.
  65. Hua H., Li M., Luo T. et al. Matrix metalloproteinases in tumorigenesis: an evolving paradigm. Cell. Mol. Life Sci. 2011; 68(23): 3853-68.
  66. Xie S., Price J.E., Luca M. et al. Dominant-negative CREB inhibits tumor growth and metastasis of human melanoma cells. Oncogene 1997; 15(17): 2069-75.
  67. Borsig L. Selectins in cancer immunity. Glycobiology 2018; 28(9): 648-55.
  68. Kansas G.S. Selectins and their ligands: Current concepts and controversies. Blood 1996; 88(9): 3259-87.
  69. Ley K. The role of selectins in inflammation and disease. Trends Mol. Med. 2003; 9: 263-8.
  70. Laubli H., Borsig L. Selectins promote tumor metastasis. Semin. Cancer Biol. 2010; 20(3): 169-77.
  71. Zarbock A., Muller H., Kuwano Y. et al. PSGL-1-dependent myeloid leukocyte activation. J. Leukoc. Biol. 2009; 86(5): 1119-24.
  72. Paschos K.A., Canovas D., Bird N.C. The engagement of selectins and their ligands in colorectal cancer liver metastases. J. Cell. Mol. Med. 2010; 14(1-2): 165-74.
  73. Witz I.P. The selectin-selectin ligand axis in tumor progression. Cancer Metastasis Rev. 2008; 27(1): 19-30.
  74. Laubli H., Stevenson J.L., Varki A. et al. L-selectin facilitation of metastasis involves temporal induction of Fut7-dependent ligands at sites of tumor cell arrest. Cancer Res. 2006; 66(3): 1536-42.
  75. Iczkowski K.A. Cell adhesion molecule CD44: its functional roles in prostate cancer. Am.J. Transl. Res. 2010; 3(1): 1-7.
  76. Данилова Н.В., Андреева Ю.Ю., Завалишина Л.Э. и др. Маркеры стромальной инвазии при фоновых и предраковых изменениях железистого эпителия и аденокарциноме шейки матки. Архив патологии 2012; 74(4): 28-34.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Эко-Вектор, 2020



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах