Тканевая инженерия клапанов сердца:децеллюляризация алло и ксенографтов

Обложка
  • Авторы: Курапеев ДИ1, Лаврешин АВ1, Анисимов СВ2
  • Учреждения:
    1. Федеральный центр сердца, крови и эндокринологии им. В.А. Алмазова, Санкт-ПетербургИнститут экспериментальной медицины РАМН, Санкт-Петербург
    2. Федеральный центр сердца, крови и эндокринологии им. В.А. Алмазова, Санкт-Петербург
  • Выпуск: Том 7, № 1 (2012)
  • Страницы: 34-39
  • Раздел: Статьи
  • Статья получена: 11.01.2023
  • Статья опубликована: 15.03.2012
  • URL: https://genescells.ru/2313-1829/article/view/121679
  • DOI: https://doi.org/10.23868/gc121679
  • ID: 121679


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Имеющиеся осложнения, связанные с протезированием
клапанов сердца, диктуют необходимость разработки новых
методов создания протезов клапанов. Одним из таких мето-
дов является тканевая инженерия клапанов сердца. Клапа-
ны, изготовленные с помощью тканеинженерного подхода,
являются биосовместимыми, прочными, длительно служа-
щими, не требуют антикоагулянтной терапии, а главное,
способны к регенерации и росту вместе с ростом сердца
реципиента. Наиболее развитым направлением тканевой
инженерии клапанов сердца является их децеллюляриза-
ция, то есть создание бесклеточного матрикса, который
можно заселить клетками-предшественницами пациента и
трансплантировать. В данном обзоре рассмотрены основ-
ные способы и методы децеллюляризации, их качество
и способность влиять на структурные и биомеханические
свойства алло- и ксенографтов.

Об авторах

Д И Курапеев

Федеральный центр сердца, крови и эндокринологии им. В.А. Алмазова, Санкт-ПетербургИнститут экспериментальной медицины РАМН, Санкт-Петербург

Федеральный центр сердца, крови и эндокринологии им. В.А. Алмазова, Санкт-ПетербургИнститут экспериментальной медицины РАМН, Санкт-Петербург

А В Лаврешин

Федеральный центр сердца, крови и эндокринологии им. В.А. Алмазова, Санкт-ПетербургИнститут экспериментальной медицины РАМН, Санкт-Петербург

Федеральный центр сердца, крови и эндокринологии им. В.А. Алмазова, Санкт-ПетербургИнститут экспериментальной медицины РАМН, Санкт-Петербург

С В Анисимов

Федеральный центр сердца, крови и эндокринологии им. В.А. Алмазова, Санкт-Петербург

Федеральный центр сердца, крови и эндокринологии им. В.А. Алмазова, Санкт-Петербург

Список литературы

  1. Yacoub M.H., Takkenberg J.J. Will heart valve tissue engineering change the world? Nat. Clin. Pract. Cardiovasc. Med. 2005; 2(2): 60-1.
  2. Yacoub M.H., Cohn L.H. Novel approaches to cardiac valve repair: from structure to function. Circulation 2004; 109(8): 942-50.
  3. Rabkin-Aikawa E., Farber M., Aikawa M. et al. Dynamic and reversible changes of interstitial cell phenotype during remodeling of cardiac valves. J Heart Valve Dis. 2004; 13(5): 841--7.
  4. Schoen F.J., Edwards W.D. Valvular heart disease: general principles and stenosis. In: Silver M.D., Gotlieb A.I., Schoen F.J., editors. Cardiovascular pathology. 3rd ed. New York: Churchill Livingstone; 2001. p. 402-5.
  5. Knight R.L., Wilcox H.E., Korossis S.A. et al. The use of acellular matrices for the tissue engineering of cardiac valves. Proc. Inst. Mech. Eng. H. 2008; 222(1): 129-43.
  6. Mendelson K., Schoen F.J. Heart valve tissue engineering: concepts, approaches, progress, and challenges. Ann. Biomed. Eng. 2006; 34(12): 1799-819.
  7. Butcher J.T., Penrod A.M., García A.J. et al. Unique morphology and focal adhesion development of valvular endothelial cells in static and fluid flow environments. Arterioscler. Thromb. Vasc. Biol. 2004; 24(8): 1429-34.
  8. Schoen F.J. Evolving concepts of cardiac valve dynamics: the continuum of development,functional structure, pathobiology, and tissue engineering. Circulation 2008; 118(18): 1864-80.
  9. Taylor P.M., Batten P., Brand N.J. et al. The cardiac valve interstitial cell. Int. J. Biochem. Cell. Biol. 2003; 35(2): 113-8.
  10. Mulholland D.L., Gotlieb A.I. Cell biology of valvular interstitial cells. Can. J. Cardiol. 1996; 12(3): 231-6.
  11. Aikawa E., Whittaker P., Farber M. et al. Human semilunar cardiac valve remodeling by activated cells from fetus to adult: implications for postnatal adaptation, pathology, and tissue engineering. Circulation 2006; 113(10): 1344-52.
  12. Grimm M., Eybl E., Grabenwoger M. et al. Biocompatibility of aldehyde-fixed bovine pericardium. An in vitro and in vivo approach toward improvement of bioprosthetic heart valves. J. Thorac. Cardiovasc. Surg. 1991; 102: 195-201.
  13. Langer R., Vacanti J.P. Tissue engineering. Science 1993; 14; 260(5110): 920-6.
  14. Vesely I. Heart valve tissue engineering. Circ Res. 2005; 97(8): 743-55.
  15. Schoen F.J., Levy R.J., Nelson A.C. Onset and progression of experimental bioprosthetic heart valve calcification. Lab Invest. 1985; 52: 523-32.
  16. Human P., Zilla P. Characterization of the immune response to valve bioprostheses and its role in primary tissue failure. Ann Thorac Surg. 2001; 71: S385-8.
  17. Shaddy R.E., Hunter D.D., Osborne K.A. et al. Prospective analysis of HLA immunogenicity of cryopreserved valved allografts used in pediatric heart surgery. Circulation 1996; 94: 1063-7.
  18. Smith J.D., Ogino H., Hunt D. et al. Humoral immune response to human aortic valve homografts. Ann. Thorac. Surg. 1995; 60(2 Suppl): S127-30.
  19. Hawkins J.A., Hilman N.D., Lambert L. et al. Immunogenicity of decellularized cryopreserved allografts in pediatric cardiac surgery: comparison with standard cryopreserved allografts. J. Thorac. Cardiovasc. Surg. 2003; 126: 247-53.
  20. Numata S., Fujisato T., Niwaya K. et al. Immunological and histological evaluation of decellularized allograft in a pig model: comparison with cryopreserved allograft. J. Heart Valve Dis. 2004; 13(6): 984-90.
  21. Lichtenberg A., Tudorache I., Cebotari S. et al. A Preclinical testing of tissue-engineered heart valves re-endothelialized under simulated physiological conditions. Circulation 2006; 114(1 Suppl): I559-65.
  22. Cebotari S., Mertsching H., Kallenbach K. et al. Construction of autologous human heart valves based on an acellular allograft matrix. Circulation 2002; 106(12): I63-8.
  23. Allaire E., Guettier C., Bruneval P. et al. Cell-free arterial grafts: morphologic сharacteristics of aortic isografts, allografts, and xenografts in rats. J. Vasc. Surg. 1994; 19(3): 446-56.
  24. Booth C., Korossis S.A., Wilcox H.E. et al. Tissue engineering of cardiac valve prostheses I: development and histological characterization of an acellular porcine scaffold. J. Heart Valve Dis. 2002; 11(4): 457-62.
  25. Samouillan V., Dandurand-Lods J., Lamure A. et al. Thermal analysis characterization of aortic tissues for cardiac valve bioprostheses. J. Biomed. Mater. Res. 1999; 46(4): 531-8.
  26. Korossis S.A., Booth C., Wilcox H.E. et al. Tissue engineering of cardiac valve prostheses II: biomechanical characterization of decellularized porcine aortic heart valves. J. Heart Valve Dis. 2002; 11(4): 463-71.
  27. Rieder E., Kasimir M.T., Silberhumer G. et al. Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. J. Thorac. Cardiovasc. Surg. 2004; 127(2): 399-405.
  28. Schaner P.J., Martin N.D., Tulenko T.N. et al. Decellularized vein as a potential scaffold for vascular tissue engineering. J. Vasc. Surg. 2004; 40(1): 146-53.
  29. Meyer S.R., Chiu B., Churchill T.A. et al. Comparison of aortic valve allograft decellularization techniques in the rat. J. Biomed. Mater. Res. 2006; 79(2): 254-62.
  30. Bader A., Steinhoff G., Strobl K. et al. Engineering of human vascular aortic tissue based on a xenogeneic starter matrix. Transplantation 2000; 70(1): 7-14.
  31. Vesely I., Noseworthy R., Pringle G. The hybrid xenograft/ autograft bioprosthetic heart valve: in vivo evaluation of tissue extraction. Ann. Thorac. Surg. 1995; 60(2): S359-64.
  32. Cole W.G., Chan D., Hickey A.J. et al. Collagen composition of normal and myxomatous human mitral heart valves. Biochem. 1984; 219(2): 451-60.
  33. Schenke-Layland K., Vasilevski O., Opitz F. et al. Impact of decellularization of xenogeneic tissue on extracellular matrix integrity for tissue engineering of heart valves. J. Struct. Biol. 2003; 143(3): 201-8.
  34. Tudorache I., Cebotari S., Sturz G. et al. Tissue engineering of heart valves: biomechanical and morphological properties of decellularized heart valves. J. Heart Valve Dis. 2007; 16(5): 567-73.
  35. Wang K.X., Zhang J.F., Zhan Q.P. et al. Effect of trypsin and Triton-X 100 for decellularization of porcine aortic heartvalves. Di Yi Jun Yi Da Xue Xue Bao. 2005; 25(1): 22-5.
  36. Liao J., Joyce E.M., Sacks M.S. Effects of decellularization on the mechanical and structural properties of the porcine aortic valve leaflet. Biomaterials 2008; 29(8): 1065-74.
  37. Courtman D.W., Pereira C.A., Omar S. et al. Biomechanical and ultrastructural comparison of cryopreservation and a novel cellular extraction of porcine aortic valve leaflets. Biomed. Mater. Res. 1995; 29(12): 1507-16.
  38. Neugebauer J.M. Detergents: an overview. In: M.P. Deutscher, editor. Guide to protein purification. San Diego: Academic Press, 1990.
  39. 39. Erdbrügger W., Konertz W., Dohmen P.M. et al. Decellularized xenogenic heart valves reveal remodeling and growth potential in vivo. Tissue Eng. 2006; 12(8): 2059-68.
  40. 40. Fang N-T., Xie S-Z., Wang S-M. et al. Construction of tissue-engineered heart valves by using decellularized scaffolds and endothelial progenitor cells. Chinese Med. J. 2007; 120(8): 696-702.
  41. Murase Y., Narita Y., Kagami H. et al. Evaluation of compliance and stiffness of decellularized tissues as scaffolds for tissue-engineered small caliber vascular grafts using intravascular ultrasound. ASAIO 2006; 52(4): 450-5.
  42. Rieder E., Seebacher G., Kasimir M.T. et al. Tissue engineering of heart valves: decellularized porcine and human valve scaffolds differ importantly in residual potential to attract monocytic cells. Circulation 2005; 111(21): 2792-7.
  43. Goldstein S., Clarke D.R., Walsh S.P. et al. Transpecies heart valve transplant: advanced studies of a bioengineered xeno-autograft. Ann. Thorac. Surg. 2000; 70: 1962-9.
  44. Simon P., Kasimir M.T., Seebacher G. et al. Early failure of the tissue engineered porcine heart valve SYNERGRAFT in pediatric patients. Eur. J. Cardiothorac. Surg. 2003; 23: 1002-6.
  45. Dohmen P.M., Costa F., Lopes S.V. et al. Results of a decellularized porcine heart valve implanted into the juvenile sheep model. Heart Surg. Forum. 2005; 8: 100-4.
  46. Konertz W., Dohmen P.M., Liu J. et al. Hemodynamic characteristics of the Matrix P decellularized xenograft for pulmonary valve replacement during Ross operation. J. Heart Valve Dis. 2005; 14: 78-81.
  47. Dohmen P.M., Konertz W. Results with decellularized xenografts. Circ. Res. 2006; 99(4): 10.
  48. 48. da Costa F.D., Dohmen P.M., Duarte D. et al. Immunological and echocardiographic evaluation of decellularized versus cryopreserved allografts during the Ross operation. Eur. J. Cardiothorac. Surg. 2005; 27(4): 572-8.
  49. Mendelson K., Schoen F.J. Heart valve tissue engineering: concepts, approaches, progress, and challenges. Ann. Biomed. Eng. 2006; 34(12): 1799-819.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Эко-Вектор, 2012



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах