Efficiency of autofibroblasts in surgical treatment of parodontitis

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Dysferlinopathies is a group of autosomal-recessive inherited neuromuscular diseases, which are characterized by defect in mRNA expression or in functionioning of dysferlin protein, appearing in about 1/200 000 births. Dysferlin is encoded by DYSF gene (Dystrophy-associated fer-1-like). It's disruption can cause various types of primary dysferlinopathies, which include Miyoshi myopathy (MM), Limb-girdle Muscular Dystrophy type 2B (LGMD2B) and distal myopathy with anterior tibial onset. Also, dysferlin deficiency can be associated with other diseases, such as caveolin- and calpainopathies. Here we discuss dysferlin protein structure and function, it's clinical phenotypes, known animal models and developing treatment strategies for dysferlinopathies.

Full Text

Restricted Access

About the authors

I. G Starostina

Kazan federal university

Kazan

V. V Solovyeva

Kazan federal university

Kazan

K. S Yuryeva

Human Stem Cells Institute

Moscow

K. G Shevchenko

Human Stem Cells Institute

Moscow

V. P Fedotov

Voronezh Regional Clinical Hospital № 1

Voronezh

A. A Rizvanov

Kazan federal university

Kazan

R. V Deev

Human Stem Cells Institute

Moscow

A. A Isaev

Human Stem Cells Institute

Moscow

References

  1. Zager E.L., Shaver E.G., Hurst R.W., Flamm E.S. Distal anterior inferior cerebellar artery aneurysms. Report of four cases. Neurosurg. 2002; 97(3): 692-6.
  2. Miyoshi K., Kawai H, Iwasa M., et al. Autosomal recessive distal muscular dystrophy as a new type of progressive muscular dystrophy. Seventeen cases in eight families including an autopsied case. Brain 1986; 109 (1): 31-54.
  3. Mahjneh I., Marconi G., Bushby K. et al. Dysferlinopathy (LGMD2B): a 23-year follow-up study of 10 patients homozygous for the same frameshifting dysferlin mutations. Neuromuscul Disord. 2001. 11(1): 20-6.
  4. Richard I., Broux O., Allamand V. et al., Mutations in the proteolytic enzyme calpain 3 cause limb-girdle muscular dystrophy type 2A. Cell 1995; 81(1): 27-40.
  5. Bejaoui K., Hirabayashi K., Hentati F. et al. Linkage of Miyoshi myopathy (distal autosomal recessive muscular dystrophy) locus to chromosome 2p12-14. Neurology 1995; 45(4): 768-72.
  6. Weiler T., Greenberg C.R., Nylen E. et al. Limb-girdle muscular dystrophy and Miyoshi myopathy in an aboriginal Canadian kindred map to LGMD2B and segregate with the same haplotype. Am J Hum Genet. 1996; 59(4): 872-8.
  7. Mahjneh I., Vannelli G., Bushby K., Marconi G.P. A large inbred Palestinian family with two forms of muscular dystrophy. Neuromuscul Disord. 1992; 2(4): 277-83.
  8. Illarioshkin S.N., Ivanova-Smolenskaya I.A., Greenberg C.R. et al. Identical dysferlin mutation in limb-girdle muscular dystrophy type 2b and distal myopathy. Neurology 2000; 55(12): 1931-3
  9. Liu J., Aoki M., Illa I. et. al. Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy. Nat Genet. 1998; 20(1): 31-6.
  10. Bashir R., Britton S., Strachan T. et al. A gene related to Caenorhabditis elegans spermatogenesis factor fer-1 is mutated in limb-girdle muscular dystrophy type 2B. Nat Genet. 1998; 20(1): 37-42.
  11. Bushby K.M. Making sense of the limb-girdle muscular dystrophies. Brain 1999; 122 (8): 1403-20.
  12. Eymard B., Laforet P., Tome F.M, et al. Miyoshi distal myopathy: specific signs and incidence. Rev Neurol. 2000; 156(2): 161-8.
  13. Pradhan S. Calf-head sign in Miyoshi myopathy. Arch Neurol. 2006; 63(10): 1414-7.
  14. Pradhan S. Diamond on quadriceps: a frequent sign in dysferlinopathy. Neurology 2008; 70(4): 322.
  15. Yasunaga S., Grati M., Cohen-Salmon M. et al. A mutation in OTOF, encoding otoferlin, a FER-1-like protein, causes DFNB9, a nonsyndromic form of deafness. Nat Genet. 1999. 21(4): 363-9.
  16. Britton S., Freeman T., Vafiadaki E. et al. The third human FER-1-like protein is highly similar to dysferlin. Genomics 2000; 68(3): 313-21.
  17. Davis D.B., Delmonte A.J., Ly C.T., McNally E.M. et al. Myoferlin, a candidate gene and potential modifier of muscular dystrophy. Hum Mol Genet. 2000; 9(2): 217-26.
  18. Glover L. and Brown R.H. Jr. Dysferlin in membrane trafficking and patch repair. Traffic 2007; 8(7): 785-94.
  19. Achanzar W.E. and Ward S. A nematode gene required for sperm vesicle fusion. J Cell Sci. 1997; 110 (9): 1073-81.
  20. Doherty K.R., Cave A., Davis D.B., Delmonte A.J. et al. Normal myoblast fusion requires myoferlin. Development 2005; 132(24): 5565-75.
  21. Inoue M., Wakayama Y., Kojima H., Shibuya S. et al. Expression of myoferlin in skeletal muscles of patients with dysferlinopathy. Tohoku J Exp Med. 2006; 209(2): 109-16.
  22. Roux I., Safieddine S., Nouvian R., Grati M., et al., Otoferlin, defective in a human deafness form, is essential for exocytosis at the auditory ribbon synapse. Cell 2006; 127(2): 277-89.
  23. de Morree A., Hensbergen P.J., van Haagen H.H. et al. Proteomic Analysis of the Dysferlin Protein Complex Unveils Its Importance for Sarcolemmal Maintenance and Integrity. PLoS ONE 2010; 5(11): e13854.
  24. Xu L., Pallikkuth S., Hou Z. et al. Dysferlin Forms a Dimer Mediated by the C2 Domains and the Transmembrane Domain In Vitro and in Living Cells. PLoS ONE 2011; 6(11): e27884.
  25. Hochmeister S., Grundtner R., Bauer J., et al., Dysferlin Is a New Marker for Leaky Brain Blood Vessels in Multiple Sclerosis. J Neuropathol Exp Neurol. 2006; 65(9): 855-86
  26. Izzedine H., Brocheriou I., Eymard B. et al. Loss of podocyte dysferlin expression is associated with minimal change nephropathy. Am J Kidney Dis. 2006. 48(1):143-50.
  27. Lang C.T., Markham K.B., Behrendt N.J., et al. Placental Dysferlin Expression is Reduced in Severe Preeclampsia. Placenta 2009; 30(8): 711-8.
  28. Cacciottolo M., Numitone G., Aurino S. et al. Muscular dystrophy with marked Dysferlin deficiency is consistently caused by primary dysferlin gene mutations. Eur J Hum Genet. 2011; 19(9): 974-80.
  29. de Luna N., Gallardo E., Soriano M. et al. Absence of dysferlin alters myogenin expression and delays human muscle differentiation «in vitro». J Biol Chem. 2006; 281(25): 17092-8.
  30. McNeil P.L., Miyake K., Vogel S.S. The endomembrane requirement for cell surface repair. Proc Natl Acad Sci. 2003; 100(8): 4592-7.
  31. Bi, G.Q., Alderton J.M., Steinhardt R.A. Calcium-regulated exocytosis is required for cell membrane resealing. J Cell Biol. 1995; 131(6 Pt 2): 1747-58.
  32. Miyake K., McNeil P.L. Vesicle accumulation and exocytosis at sites of plasma membrane disruption. J Cell Biol. 1995; 131(6 Pt 2): 1737-45.
  33. Bischofberger M., Gonzalez M.R., van der Goot F.G. Membrane injury by pore-forming proteins. Curr Opin Cell Biol. 2009; 21(4): 589-95
  34. Selcen, D., Stilling G., Engel A.G. The earliest pathologic alterations in dysferlinopathy. Neurology 2001; 56(11): 1472-81.
  35. Cenacchi G., Fanin M., De Giorgi L.B., Angelini C. Ultrastructural changes in dysferlinopathy support defective membrane repair mechanism. J Clin Pathol. 2005; 58(2): 190-5.
  36. Bi G.Q., Morris R.L., Liao G., Alderton J.M. et al. Kinesin-and myosin-driven steps of vesicle recruitment for Ca2+-regulated exocytosis. J Cell Bio. 1997; 138(5): 999-1008.
  37. Togo, T., Steinhardt R.A. Nonmuscle myosin IIA and IIB have distinct functions in the exocytosis-dependent process of cell membrane repair. Mol Biol Cell. 2004; 15(2): 688-95.
  38. Cacciottolo M., Belcastro V., Laval S. et al. Reverse engineering gene network identifies new dysferlin-interacting proteins. J Biol Chem. 2011; 286(7): 5404-13.
  39. Lennon N.J., Kho A., Bacskai B.J. et al. Dysferlin interacts with annexins A1 and A2 and mediates sarcolemmal wound-healing. J Biol Chem. 2003; 278(50): 50466-73.
  40. Weisleder N., Takeshima H., Ma J. Mitsugumin 53 (MG53) facilitates vesicle trafficking in striated muscle to contribute to cell membrane repair. Commun Integr Biol. 2009; 2(3): 225-6.
  41. Cai C., Weisleder N., Ko J.K. Membrane repair defects in muscular dystrophy are linked to altered interaction between MG53, caveolin-3, and dysferlin. J Biol Chem. 2009; 284(23): 15894-902.
  42. Cai C., Masumiya H., Weisleder N. et al. MG53 regulates membrane budding and exocytosis in muscle cells. J Biol Chem. 2009; 284(5): 3314-22.
  43. Cai C., Masumiya H., Weisleder N. et al. MG53 nucleates assembly of cell membrane repair machinery. Nat Cell Biol. 2009; 11(1): 56-64.
  44. Wang X., Xie W., Zhang Y. et al. Cardioprotection of ischemia/ reperfusion injury by cholesterol-dependent MG53-mediated membrane repair. Circ Res. 2010; 107(1): 76-83.
  45. Cao C.M., Zhang Y., Weisleder N. et al., MG53 constitutes a primary determinant of cardiac ischemic preconditioning. Circulation 2010; 121(23): 2565-74.
  46. Huang Y., Laval S.H., van Remoortere A. et al. AHNAK, a novel component of the dysferlin protein complex, redistributes to the cytoplasm with dysferlin during skeletal muscle regeneration. FASEB J. 2007; 21(3): 732-42.
  47. Matsuda C., Kameyama K., Tagawa K. et al. Dysferlin interacts with affixin (beta-parvin) at the sarcolemma. J Neuropathol Exp Neurol. 2005; 64(4): 334-40.
  48. Rezvanpour, A., Shaw G.S. Unique S100 target protein interactions. Gen Physiol Biophys. 2009; 28 Spec No Focus: F39-46.
  49. Huang Y., de Morree A., van Remoortere A. et al. Calpain 3 is a modulator of the dysferlin protein complex in skeletal muscle. Hum Mol Genet. 2008; 17(12): 1855-66.
  50. Azakir B.A., Di Fulvio S., Therrien C., Sinnreich M. et al. Dysferlin interacts with tubulin and microtubules in mouse skeletal muscle. PLoS One 2010; 5(4): e10122.
  51. Ampong B.N., Imamura M., Matsumiya T. et al. Intracellular localization of dysferlin and its association with the dihydropyridine receptor. Acta Myol. 2005; 24(2): 134-44.
  52. Schoewel V., Marg A., Kunz S. et al. Dysferlin-Peptides Reallocate Mutated Dysferlin Thereby Restoring Function. PLoS ONE 2012; 7(11): e49603.
  53. Klinge L., Laval S., Keers S. et al. From T-tubule to sarcolemma: damage-induced dysferlin translocation in early myogenesis. FASEB J. 2007; 21(8): 1768-76.
  54. Klinge L., Harris J., Sewry C. et al. Dysferlin associates with the developing T-tubule system in rodent and human skeletal muscle. Muscle Nerve. 2010; 41(2): 166-73.
  55. Covian-Nares J.F., Koushik S.V., Puhl H.L. 3Rd, Vogel S.S. Membrane wounding triggers ATP release and dysferlin-mediated intercellular calcium signaling. J Cell Sci. 2010; 123(Pt 11): 1884-93.
  56. Rawat R., Cohen T.V., Ampong B. et al. Inflammasome upregulation and activation in dysferlin-deficient skeletal muscle. Am J Pathol. 2010; 176(6): 2891-900.
  57. Iwata Y., Katanosaka Y., Hisamitsu T., Wakabayashi S. et al. Enhanced Na+/H+ exchange activity contributes to the pathogenesis of muscular dystrophy via involvement of P2 receptors. Am J Pathol. 2007; 171(5): 1576-87.
  58. Nagaraju K., Rawat R., Veszelovszky E. et al. Dysferlin deficiency enhances monocyte phagocytosis: a model for the inflammatory onset of limb-girdle muscular dystrophy 2B. Am J Pathol. 2008; 172(3): 774-85.
  59. Han R., Frett E.M., Levy J.R. et al. Genetic ablation of complement C3 attenuates muscle pathology in dysferlin-deficient mice. J Clin Invest. 2010; 120(12): 4366-74.
  60. Millay D.P., Maillet M., Roche J.A. et al. Genetic manipulation of dysferlin expression in skeletal muscle: novel insights into muscular dystrophy. Am J Pathol. 2009; 175(5): 1817-23.
  61. Urtizberea J.A., Bassez G., Leturcq F. et al. Dysferlinopathies. Neurol India. 2008; 56(3): 289-97.
  62. Guglieri M., Magri F., D'Angelo M.G. et al. Clinical, molecular, and protein correlations in a large sample of genetically diagnosed Italian limb girdle muscular dystrophy patients. Hum Mutat. 2008; 29(2): 258-66.
  63. Nguyen K., Bassez G,, Krahn M. et al. Phenotypic study in 40 patients with dysferlin gene mutations: high frequency of atypical phenotypes. Arch Neurol. 2007; 64(8): 1176-82.
  64. Fanin, M., Angelini C. Muscle pathology in dysferlin deficiency. Neuropathol Appl Neurobiol. 2002; 28(6): 461-70.
  65. Spuler S., Carl M., Zabojszcza J. et al. Dysferlin-deficient muscular dystrophy features amyloidosis. Ann Neurol. 2008; 63(3): 323-8.
  66. Gallardo E., Rojas-Garcia R., de Luna N. et al. Inflammation in dysferlin myopathy: immunohistochemical characterization of 13 patients. Neurology 2001; 57(11): 2136-8.
  67. Ho M., Gallardo E., McKenna-Yasek D. et al. A novel, blood-based diagnostic assay for limb girdle muscular dystrophy 2B and Miyoshi myopathy. Ann Neurol. 2002; 51(1): 129-33.
  68. De Luna N., Freixas A., Gallano P. et al. Dysferlin expression in monocytes: a source of mRNA for mutation analysis. Neuromuscul Disord. 2007; 17(1): 69-76.
  69. Kwiatkowska, K., Sobota A. Signaling pathways in phagocytosis. Bioessays. 1999; 21(5): 422-31.
  70. Caron, E., Hall A., Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science 1998; 282(5394): 1717-21.
  71. Bokoch, G.M., Knaus U.G. The role of small GTP-binding proteins in leukocyte function. Curr Opin Immunol. 1994; 6(1): 98-105.
  72. Cox D., Chang P, Zhang Q. et al. Requirements for both Rac1 and Cdc42 in membrane ruffling and phagocytosis in leukocytes. J Exp Med. 1997; 186(9): 1487-94.
  73. Aoki M., Liu J., Richard I. et al. Genomic organization of the dysferlin gene and novel mutations in Miyoshi myopathy. Neurology 2001; 57(2): 271-8.
  74. Bittner R.E., Anderson L.V., Burkhardt E. et al. Dysferlin deletion in SJL mice (SJL-Dysf) defines a natural model for limb girdle muscular dystrophy 2B. Nat Genet. 1999; 23(2): 141-2.
  75. Vainzof M., Ayub-Guerrieri D., Onofre P.C. et al. Animal models for genetic neuromuscular diseases. J Mol Neurosci. 2008; 34(3): 241-8.
  76. Kobayashi K., Izawa T., Kuwamura M., Yamate J. Dysferlin and animal models for dysferlinopathy. J Toxicol Pathol. 2012; 25(2): 135-47.
  77. Ho M., Post C.M., Donahue L.R. et al. Disruption of muscle membrane and phenotype divergence in two novel mouse models of dysferlin deficiency. Hum Mol Genet. 2004; 13(18): 1999-2010.
  78. Старостина И.Г., Соловьева В.В., Шевченко К.Г. et al. Создание рекомбинантного аденовируса, кодирующего кодон-оптими-зированный ген дисферлина, и анализ экспрессии рекомбинантного белка в культуре клеток in vitro. КТТИ. 2012; VII(4): 25-28.
  79. Yan Z., Zhang Y., Duan D. et al. Trans-splicing vectors expand the utility of adeno-associated virus for gene therapy. Proc Natl Acad Sci. 2000; 97(12): 6716-21.
  80. Xu Z., Yue Y., Lai Y. et al. Trans-splicing adeno-associated viral vector-mediated gene therapy is limited by the accumulation of spliced mRNA but not by dual vector coinfection efficiency. Hum Gene Ther. 2004; 15(9): 896-905.
  81. Lostal W., Bartoli M., Bourg N. et al. Efficient recovery of dysferlin deficiency by dual adeno-associated vector-mediated gene transfer. Hum Mol Genet. 2010; 19(10): 1897-907.
  82. Krahn M., Wein N., Bartoli M. et al. A naturally occurring human minidysferlin protein repairs sarcolemmal lesions in a mouse model of dysferlinopathy. Sci Transl Med. 2010, 2(50): 50ra69.
  83. Lostal W., Bartoli M., Roudaut C. et al. Lack of Correlation between Outcomes of Membrane Repair Assay and Correction of Dystrophic Changes in Experimental Therapeutic Strategy in Dysferlinopathy. PLoS ONE 2012; 7(5): e38036.
  84. Park, K.S., Oh D. Gene therapy for muscular dystrophies: progress and challenges. J Clin Neurol. 2010; 6(3): p. 111-6.
  85. Aartsma-Rus A., Singh K.H., Fokkema I.F. et al. Therapeutic exon skipping for dysferlinopathies? Eur J Hum Genet. 2010; 18(8): 889-94.
  86. Wein N., Avril A., Bartoli M. et al. Efficient bypass of mutations in dysferlin deficient patient cells by antisense-induced exon skipping. Hum Mutat. 2010; 31: 136-42.
  87. Secco M., Zucconi E., Vieira N.M. et al. Multipotent stem cells from umbilical cord: cord is richer than blood! Stem Cells 2008; 26(1): 146-50.
  88. Chan J., Waddington S.N., O'Donoghue K. et al. Widespread distribution and muscle differentiation of human fetal mesenchymal stem cells after intrauterine transplantation in dystrophic mdx mouse. Stem Cells 2007; 25(4): 875-84.
  89. Quattrocelli M.,Cassano M., Crippa S. et al. Cell therapy strategies and improvements for muscular dystrophy. Cell Death Differ. 2010; 17(8): 1222-9.
  90. Sancricca C., Mirabella M., Gliubizzi C. et al. Vessel-associated stem cells from skeletal muscle: From biology to future uses in cell therapy. World J Stem Cells. 2010; 2(3): 39-49.
  91. Leriche-Guerin K., Anderson L.V., Wrogemann K. et al. Dysferlin expression after normal myoblast transplantation in SCID and in SJL mice. Neuromuscul Disord. 2002; 12(2): 167-73.
  92. Kong K.Y., Ren J., Kraus M. et al. Human umbilical cord blood cells differentiate into muscle in sjl muscular dystrophy mice. Stem Cells 2004; 22(6): 981-93.
  93. Vieira N.M., Bueno C.R. Jr., Brandalise V. et al. SJL dystrophic mice express a significant amount of human muscle proteins following systemic delivery of human adipose-derived stromal cells without immunosuppression. Stem Cells 2008; 26(9): 2391-8.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2013 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies