Induction of capacitation of bovine spermatozoa before cryopreservation increases their viability after thawing

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Cryopreservation of sperm is an important tool of reproductive biotechnology in the solving of the problems in infertility and reproduction of animals. In despite of the achievements in this field, the mechanisms that determine the cryoresistance of male gametes require further study. The damaging effect of ultralow temperatures during cryopreservation is primarily directed to the plasma membrane of spermatozoa. The purpose of this study is to analyze the viability of thawed bull spermatozoa after preventively induced capacitation with the further cryopreservation. Ejaculates of three noninbred bulls of Ayrshire and black-and-white breeds were used in the experiments. The functional state of spermatozoa was evaluated with a chlortetracycline test. Gametes were ranked in accordance with one of the three types of fluorescence of CTC-calcium-membrane complex : uniform fluorescence throughout the head (uncapacitated cells); fluorescence-free band in the post-acrosome region (capacitated cells); low fluorescence in the entire head, except for a thin bright fluorescence band in the equatorial segment (acrosome-reactive cells). The viability of spermatozoa was assessed with propidium iodide (5 |jg / ml). Capacitation was induced by heparin (5 jg / ml) or theophylline / dbcAMP (250/100 jM). It was shown that the induction of the capacitation of bull sperm by heparin, as well as theophylline /dbcAMP before cryopreservation enhances the number of viable sperm, reduces the number of capacitated cells and increases the number of sperm with acrosome reaction after thawing. In intact (without freezing) spermatozoa after induction of capacitation such effect is not revealed, the number of viable cells remained unchanged, the induction of capacitation caused an increase number of capacitated spermatozoa. The findings expand knowledge concerning the effects of extremely low temperatures on male gametes and can be used for modernization of the cryopreservation technology for increase their survival rate after thawing.

Full Text

Restricted Access

About the authors

V. Yu Denisenko

Russian Research Institute of Farm Animal Genetics and Breeding - Branch of the L.K. Ernst Federal Science Center for Animal Husbandry

T. I Kuzmina

Russian Research Institute of Farm Animal Genetics and Breeding - Branch of the L.K. Ernst Federal Science Center for Animal Husbandry

Email: prof.kouzmina@mail.ru

E. N Boytseva

Russian Research Institute of Farm Animal Genetics and Breeding - Branch of the L.K. Ernst Federal Science Center for Animal Husbandry

References

  1. Paoli D., Lombardo F., Lenzi A. et al. Sperm cryopreservation: effects on chromatin structure. Adv. Exp. Med. Biol. 2014; 791: 137-50.
  2. Shan N., Singh V., Yadav H.P. et al. Effect of reduced glutathione supplementation in semen extender on tyrosine phosphorylation and apoptosis like changes in frozen thawed Hariana bull spermatozoa. Anim. Reprod. Sci. 2017; 182: 111-22.
  3. Ahmad M., Nasrullah R., Riaz H. et al. Changes in motility, morphology, plasma membrane and acrosome integrity during stages of cryopreservation of buck sperm. J.S. Afr. Vet. Assoc. 2014; 85: 972.
  4. OFlaherty C., Rodriquez P., Srivastava S. L-arginine promotes capacitation andacrosome reaction in cryopreserved bovine spermatozoa. Biochim. Biophys. Acta. 2004; 1674: 215-21.
  5. Rodriguez P.C., Satorre M.M., Beconi M.T. Effect of two intracellular calcium modulators on sperm motility and heparin-induced capacitation in cryopreserved bovine spermatozoa. Anim. Reprod. Sci. 2012; 131(3-4): 135-42.
  6. Gadella B.M., Boerke A. An update on post-ejaculatory remodeling of the sperm surface before mammalian fertilization. Theriogen. 2016; 85: 113-24.
  7. Battistone M.A., Da Ros V.G., Salicioni A.M. et al. Functional human sperm capacitation requires both bicarbonate-dependent PKA activation and down-regulation of Ser/Thr phosphatases by Src family kinases. Mol. Hum. Reprod. 2013; 19: 570-80.
  8. Chen W.Y., Xu W.M., Chen Z.H. et al. Cl- is required for HCO3- entry necessary for sperm capacitation in guinea pig: involvement of a Cl-/HCO3-exchanger (SLC26A3) and CFTR. Biol. Reprod. 2009; 80: 115-23.
  9. Harayama H. Roles of intracellular cyclic AMP signal transduction in the capacitation and subsequent hyperactivation of mouse and boar spermatozoa. J. Reprod. Dev. 2013; 59: 421-30.
  10. Yoon S.J., Kwon W.S., Rahman M.S. et al. A novel approach to identifying physical markers of cryo-damage in bull spermatozoa. Plos One 2015; 4: 10-5.
  11. Albrizio M., Moramarco A.M., Nicassio M. et al. Localization and functional modification of L-type voltage-gated calcium channels in equine spermatozoa from fresh and frozen semen. Theriogen. 2014; 83: 421-9.
  12. Cormier N., Bailey J.L. A differential mechanism is involved during heparin- and cryopreservation-induced capacitation of bovine spermatozoa. Biol. Reprod. 2003; 69: 177-85.
  13. Ward C.R., Storey B.T. Determination of the time course of capacitation in mouse spermatozoa using a chlortetracycline fluorescence assay. Dev. Biol. 1984; 104: 287-96.
  14. Ricart M.C., Breininger E., Rodriquez P.C. et al. Participation of membrane adenylyl cyclase in heparin-induced capacitation in cryopreserved bovine spermatozoa. Andrologia 2015; 47: 30-6.
  15. Pons-Rejraji H., Bailey J.L., Leclerc P. Cryopreservation affects bovine sperm intracellular parameters associated with capacitation and acrosome exocytosis. Reprod. Fertil. Dev. 2009; 21: 525-37.
  16. Shannon P., Vishwanath R. The effect of optimal and suboptimal concentrations of sperm on the fertility of fresh and frozen bovine semen and a theoretical model to explain the fertility differences. Anim. Reprod. Sci. 1995; 39: 1-10.
  17. Forero-Gonzalez R.A., Celeghini E.C., Raphael C.F. et al. Effects of bovine sperm cryopreservation using different freezing techniques and cryoprotective agents on plasma, acrosomal and mitochondrial membranes. Andrologia 2012; 1: 154-9.
  18. Garcia J.C., Dominguez J.C., Pena F.J. et al. Thawing boar semen in the presence of seminal plasma: Effects on sperm quality and fertility. Anim. Reprod. Sci. 2010; 119: 160-5.
  19. Rajamanickam G.D., Kroetsch T., Kastelic J.P. et al. Testis-specific isoform of Na/K-ATPase (ATP1A4) regulates sperm function and fertility in dairy bulls through potential mechanisms involving reactive oxygen species, calcium and actin polymerization. Andrologia 2017; 5: 814-23.
  20. Чуйко А.А. Медицинская химия и клиническое применение диоксида кремния. Киев: Наукова думка; 2003.
  21. Бойцева Е.Н., Денисенко В.Ю., Кузьмина Т.И. Оценка показателей постэякуляционного созревания сперматозоидов Bos Taurus хлортетрациклиновым методом. Онтогенез 2015; 46(6): 1-7.
  22. Parrish J.J. Bovine in vitro fertilization: in vitro oocyte maturation and sperm capacitation with heparin. Theriogen. 2014; 81: 67-73.
  23. Marguez B., Suarez S.S. Different signaling pathways in bovine sperm regulate capacitation and hyperactivation. Biol. Reprod. 2004; 70: 1626-33.
  24. Денисенко В.Ю., Бойцева Е.Н., Кузьмина Т.И. и др. Способ повышения выживаемости сперматозоидов быков при криоконсервации. Патент РФ на изобретение. № RUS2620004. 21 марта 2016.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies