Effect of gelatin cryogel on proliferation and synthetic activity of fibroblasts in excision wound model



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

We prepared an experimental sample of gelatin based cryogel membrane with pore size of 50-150 μm. Confocal microscopy and LDH assay showed that the cryogel macroporous structure promotes migration and proliferation of human skin fibroblasts within the matrix in vitro. To assess in vivo effect of the cryogel an excision wound model in rats was tested The cryogel significantly increases the number of fibroblasts as well as the density and order of produced collagen fibers in the dermis to day 7 of the wound healing process. The results suggest the stimulating effect of the gelatin cryogel on fibroblasts activity and demonstrate its potential for skin regeneration

Full Text

Restricted Access

About the authors

A. A Yergeshov

Kazan (Volga Region) Federal University

Z. Y Siraeva

Kazan (Volga Region) Federal University; Kazan State Medical University

R. R Kazakova

Kazan (Volga Region) Federal University

R. I Mullin

Republic Clinical Hospital

D. M Davliev

Republic Clinical Hospital

A. A Zakirova

Kazan (Volga Region) Federal University; Republic Clinical Hospital

T. I Salikhova

Kazan (Volga Region) Federal University

E. V Kuznetsova

Kazan (Volga Region) Federal University

D. T Luong

Kazan (Volga Region) Federal University

I. N Savina

University of Brighton

T. I Abdullin

Kazan (Volga Region) Federal University; Biomedtech KFU Ltd

Email: tabdulli@gmail.com

References

  1. Drury J.L., Mooney D.J. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 2003; 24: 4337-51
  2. Gupta R., Shea J., Scaife C. et al. Polymeric micelles and nanoemulsions as drug carriers: Therapeutic efficacy, toxicity, and drug resistance. J. Control. Release. 2015; 212: 70-7.
  3. Lozinsky V.I., Galaev I.Y., Plieva F.M. et al. Polymeric cryogels as promising materials of biotechnological interest. Trends Biotechnol. 2003; 21: 445-51.
  4. Savina, I.N., Gun'ko V.M., Turov V.V. et al. Porous structure and water state in cross-linked polymer and protein cryo-hydrogels. Soft Matter. 2011; 7: 4276-83.
  5. Gottrup F., Agren M. S., Karlsmark T. Models for use in wound healing research: а survey focusing on in vitro and in vivo adult soft tissue. Wound Repair and Regen. 2000; 8(2): 83-96.
  6. Dorsett-Martin W.A. Rat models of skin wound healing: a review. Wound Repair and Regen. 2004; 12(6): 591-9.
  7. Middelkoop E., van den Bogaerdt A.J., Lamme E.N. et al. Porcine wound models for skin substitution and burn treatment. Biomaterials. 2004; 25: 1559-67.
  8. Vidinsky B., Gal P., Toporcer T. et al. Histological Study of the First Seven Days of Skin Wound Healing in Rats. Acta Vet. BRNO. 2006; 75: 197-202.
  9. Galliano R.D., Michaels J., Dobryansky M. et al. Quantitative and reproducible murine model of excisional wound healing. Wound repair and regen. 2004; 12: 485-92.
  10. Sabol F., Dancakova L., Gal P. et al. Immunohistological changes in skin wounds during the early periods of healing in a rat model. Veterinarni Medicina. 2012; 57(2): 77-82.
  11. Wang H. -M., Chou Y. -T., Wen Z.-H. et al. Novel Biodegradable Porous Scaffold Applied to Skin Regeneration. PLOS One. 2013; 8 (6): e56330.
  12. Banerjee P., Suguna L., Shanthi C. Wound healing activity of a collagen-derived cryptic peptide. Amino Acids. 2014; 47(2): 317-28.
  13. Metcalfe A.D., Ferguson M.W.J. Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J. R. Soc. Interface. 2007; 4: 413-37.
  14. Loo Y., Wong Y.-C., Cai E.Z. et al. Ultrashort peptide nanofibrous hydrogels for the acceleration of healing of burn wounds. Biomaterials. 2014; 35: 4805-14.
  15. Sullivan T., Eaglstein W.H., Davis S.C. et al. The pig as a model for human wound healing. Wound Repair and Regen. 2001; 9(2): 66-76
  16. ГОСТ ISO 10993-1-2011. Изделия медицинские. Оценка биологического действия медицинских изделий. Часть 1. Оценка и исследования. http://docs. cntd. ru/document/1200100813.
  17. Данилов Р К Раневой процесс: гистогенетические основы СПб : ВМедА им С М Кирова, 2008 380
  18. Sant'Ana E.M., Caçäo C. M., Gouvêa P. et al. Rat skin wound healing induced by alternagin-C, a disintegrin-like, Cys-rich protein from Bothrops alternatus venom. Selistre-de-Araujo Int. W. J. 2011; 8(3): 245-52
  19. Rittie L., Fisher G. J. Isolation and culture of skin fibroblasts. Methods Mol. Med. 2005; 117: 83-98.
  20. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. Text with EEA relevance, http://eur-lex. europa. eu/ legal-content/EN/TXT/?uri = celex:32010L0063.
  21. Саркисова Д.С., Перова Ю.Л. Микроскопическая техника: Руководство. М. : Медицина, 1996. 544.
  22. Gal P., Kilik M., Mokry B. et al. Simple method of open skin wound healing model in corticosteroid-treated and diabetic rats: standardization of semi-quantitative and quantitative histological assessments. Veterinarni Medicina 2008; 53(12): 652-9.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies