The effects of the male sex hormone (testosterone) on the functional activity of T-lymphocytes different degrees of differentiation



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The aim of the study was a comprehensive assessment of testosterone effects on the functional activity of T lymphocytes of different differentiation degrees (naive -CD45R + and primed -CD45RO+). Material and methods. CD45RA+ and CD45RO+ T cells obtained from a suspension of mononuclear cells from healthy donors (by immunomagnetic separation) were used as a study material (n = 48). The activation model which reflects the interaction of T lymphocytes of different differentiation degrees with antigen-presenting cells (CD2/CD3/CD28-complex activated T cells) was used to assess dose-dependent effects of testosterone on functional activity of T memory cells of different differentiation degrees. Viability assessment and identification of surface molecules CD25, CD71, CD95 on T cells of different differentiation degrees were performed by flow cytometry; the concentration of IL-2 in supernatant cell cultures was performed by enzyme immunoassay; assessment of the relative mRNA expression level of the telomerase catalytic subunit hTERT gene was performed by polymerase chain reaction. Statistical analysis was made using IBM SPSS Statistics 20 (Statistical Package for the Social Sciences). Results. The proapoptotic effect of testosterone on CD2/ CD3 / CD28-activated primed (CD45RO+) T cells has been established that may be due to nongenomic effects of the male sex hormone. Testosterone-induced changes of the system parameters IL-2/IL-2Ra induced by activated T-cells different degrees of differentiation is unidirectional, have different rates and depend on concentration of the hormone.. Suppressive effects of testosterone largely affect naive (CD45RA+) T cells. Dose-dependent effects of testosterone on the telomerase catalytic subunit (hTERT) gene expression in the background of antigen-independent activation are multidirectional and determined by the degree of T cells differentiation.

Full Text

Restricted Access

About the authors

V. V Shupletsova

I. Kant Baltic Federal University

Kaliningrad, Russia

O. G Khaziakhmatova

I. Kant Baltic Federal University

Kaliningrad, Russia

A. A Gutsol

I. Kant Baltic Federal University

Kaliningrad, Russia

N. A Sokhonevich

I. Kant Baltic Federal University

Kaliningrad, Russia

K. A Yurova

I. Kant Baltic Federal University

Kaliningrad, Russia

L. S Litvinova

I. Kant Baltic Federal University

Kaliningrad, Russia

References

  1. Viselli S.M., Reese K.R., Fan J. et al. Androgens alter B cell development in normal male mice. Cell. Immunol. 1997; 182(2): 99104.
  2. Mantalaris A., Panoskaltsis N., Sakai Y. et al. Localization of androgen receptor expression in human bone marrow. J. Pathol. 2001; 193(3): 361-6.
  3. Lai J.J., Lai K.P., Zeng W. Androgen receptor Influences on body defense system via modulation of innate and adaptive immune systems lessons from conditional AR knockout mice. A. J. Pathol. 2012; 181(5): 1504-12.
  4. Kovacs W.J., Olsen N.J. Androgen receptors in human thymocytes. J. Immunol. 1987; 139(2): 490-3;
  5. Olsen N.J., Watson M.B., Henderson G.S. et al. Androgen deprivation induces phenotypic and functional changes in the thymus of adult male mice. Endocrinology 1991; 129(5): 2471-6.
  6. Olsen N.J., Kovacs W.J. Evidence that androgens modulate human thymic T cell output. J. Investig. Med. 2011; 59(1): 32-5.
  7. Hince M., Sakkal S., Vlahos K. et al. The role of sex steroids and gonadectomy in the control of thymic involution. Cell. Immunol. 2008; 252 (1-2): 122-38.
  8. Roden A.C., Moser M.T., Tri S.D. et al. Augmentation of T cell levels and responses induced by androgen deprivation. J. Immunol. 2004; 173(10): 6098-108.
  9. Zhao S., Zhu W., Xue S. et al. Testicular defense systems: immune privilege and innate immunity. Cell. Mol. Immunol. 2014; 11(5): 428-37.
  10. Heinlein C.A., Chang C. The roles of androgen receptors and androgen-binding proteins in nongenomic androgen actions. Mol. Endocrinol. 2002; 16(10): 2181-7.
  11. Foradori C.D., Weiser M.J., Handa R.J. Non-genomic actions of androgens. Front. Neuroendocrinol. 2008; 29(2): 169-81.
  12. Chang С., Yeh S., Lee S.O. et al. Androgen receptor tAR) pathophysiological roles in androgen-related diseases in skin, bone/ muscle, metabolic syndrome and neuron/immune systems: lessons learned from mice lacking AR in specific cells. Nuclear receptor signaling 2013; 11: е001.
  13. Литвинова Л.С., Селедцов В.И., Шуплецова В.В. и соавт. Стероидная регуляция иммунной памяти. Вестник РГУ им. И. Канта 2011; 1: 77-87.
  14. Литвинова Л.С., Мазунин И.О., Гуцол А.А. и соавт. Дозозависимые эффекты стероидных гормонов на экспрессию генов Gfi1 и U2af1l4 в Т-лимфоцитах разной степени дифференцировки. Молекулярная биология 2013; 47(4): 656-67.
  15. Cunningham M., Gilkeson G. Estrogen receptors in immunity and autoimmunity. Clin. Rev. Allergy Immunol. 2011; 40(1): 66-73.
  16. Olsen N.J., Kovacs W.J. Effects of androgens on T and B lymphocyte development. Immunol. Res. 2001; 23(2-3): 281-8.
  17. Grossman C.J., Nathan P., Taylor B.B. et al. Rat thymic dihydrotestosterone receptor: preparation, location and physiochemical properties. Steroids 1979; 34(5): 539-53.
  18. McCruden A.B., Stimson W.H. Androgen receptor in the human thymus. Immunol. Lett. 1984; 8(1): 49-53.
  19. Bebo B.F. Jr, Schuster J.C., Vandenbark A.A. et al. Androgens alter the cytokine profile and reduce encephalitogenicity of myelin-reactive T cells. J. Immunol. 1999; 162: 35-40.
  20. Lin J., Weiss A. T cell receptor signaling. J. Cell Sci. 2001; 114(2): 243-4.
  21. Литвинова Л.С., Гуцол А.А., Сохоневич Н.А. и соавт. Основные поверхностные маркеры функциональной активности Т-лимфоцитов. Медицинская иммунология 2014; 16(1): 7-26.
  22. Graca L., Cobbold S.P., Waldmann H. Identification of regulatory T cells in tolerated allografts. J. Exp. Med. 2002; 195(12): 1641-6.
  23. Lindenmann M.J., Benczik M., Gaffen S.L. Anti-apoptotic signaling by the interleukin-2 receptor reveals a function for cytoplasmic tyrosine residues within the common gamma (gamma c) receptor subunit. J. Biol. Chem. 2003; 278(12): 10239-49.
  24. Ellery J.M., Nicholls P.J. Possible mechanism for the alpha subunit of the interleukin-2 receptor (CD25) to influence interleukin-2 receptor signal transduction. Immunol. Cell Biol. 2002; 80(4): 351-9.
  25. Benczik M., Gaffen S.L. The interleukin (IL)-2 family cytokines: survival and proliferation signaling pathways in T lymphocytes. Immunol. Invest. 2004; 33(2): 109-42.
  26. Дейл М.М., Формен Д. Руководство по иммунофармакологии Москва: Медицина; 1998.
  27. Saparov A., Wagner F.H., Zheng R. et al. Interleukin-2 expression by a subpopulation of primary T cells is linked to enhanced memory/effector function. Immunity 1999; 11(3): 271-80.
  28. Yamamoto М., Seki Y., Iwai K. et al. Ontogeny and localization of the cells produce IL-2 in healthy animals. Cytokine 2013; 61(3): 831-41.
  29. Хаитов Р.М. Иммунология: учебник для студентов медицинских вузов. Москва: ГЭОТАР Медиа; 2009.
  30. Li S., Guo Y., Zhu P. et al. Role of Ox-LDL/LOX-1/NF-kB signaling pathway in regulation of atherosclerotic plaque growth by testosterone in male rabbits. Vascul. Pharmacol. 2013; 59(5-6): 131-7.
  31. Angele M.K., Schwacha M.G., Ayala A. et al. Effect of gender and sex hormones on immune responses following shock. Shock 2000; 14(2): 81-90.
  32. Messingham K.A., Shirazi M., Duffner L.A. et al. Testosterone receptor blockade restores cellular immunity in male mice after burn injury. J. Endocrinol. 2001; 169(2): 299-308.
  33. Poole J.C., Andrews L.G., Tollefsbol T.O. Activity, function, and gene regulation of the catalytic subunit of telomerase (hTERT). Gene 2001; 269(1-2): 1-12.
  34. Matsumura-Arioka Y., Ohtani K., Hara T. et al. Identification of two distinct elements mediating activation of telomerase (hTERT) gene expression in association with cell growth in human T cells. Int. Immunol. 2005; 17(2): 207-15.
  35. Королькова О.Ю. Экспрессия теломеразы в иммуноком-петентных клетках человека в норме и при иммунопатологических состояниях. [автореферат диссертации на соискание учёной степени кандидата биологических наук]. Государственный научный центр Институт иммунологии ФМБА России: Новосибирск; 2011. 18 с.
  36. Benko A.L., Olsen N.J., Kovacs W.J. Estrogen and telomerase in human peripheral blood mononuclear cells. Mol. Cell. Endocrinol. 2012; 364(1-2) 83-8.
  37. Calado R.T., Yewdell W.T., Wilkerson K.L. et al. Sex hormones, acting on the Tert gene, increase telomerase activity in human primary hematopoietic cells. Blood 2009; 114(11): 2236-43.
  38. Xu D., Lin T.H., Yeh C.R. et al. The wedelolactone derivative inhibits estrogen receptor-mediated breast, endometrial, and ovarian cancer cells growth. BioMed research international 2014; http:// www.hindawi.com/journals/bmri/2014/713263/.
  39. Misiti S., Nanni G., Fontemaggi Y.S. et al. Induction of Htert expression and telomerase activity by estrogens in human ovary epithelium cells. Mol. Cell. Biol.2000; 20(11): 3764-71

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies