Analysis of Bj fibroblasts mitochondrial respiratory chain function under glucose starvation and exposure to different doses of rotenone: Implications for neurogenerative diseases



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Certain neurodegenerative diseases, such as Parkinson and Alzheimer, are characterizing by an impairment in mitochondrial function and biogenesis, which may lead to pathological changes in the central nervous system. From this putative link stems a growing interest in changes to the mitochondrial electron transport chain and the ensuing energy dysfunction in neuronal cells and connective tissue cells under normal and pathological conditions Fibroblasts involved in the formation of microenvironments of different types of specialized cells from the nervous system and their dysfunction may contribute to the pathogenesis of disease as well. In this regard, we have obtained stressful conditions of human dermal fibroblasts approximating of the pathological phenotype observed in Parkinson's disease. Was studied the expression and activity of the protein complexes of the mitochondria respiratory chain including translocase TOM20 under inhibition of NADH dehydrogenase and maintaining of oxidative stress

Full Text

Restricted Access

About the authors

V. V Ivanova

Kazan (Volga region) Federal University

Email: Vilenavita@gmail.com

I. G Starostina

Kazan (Volga region) Federal University

E. V Martynova

Kazan (Volga region) Federal University

S. P Pereira

Center for Neuroscience and Cell Biology, University of Coimbra

P. J Oliveira

Center for Neuroscience and Cell Biology, University of Coimbra

A. A Rizvanov

Kazan (Volga region) Federal University

References

  1. Migliore L., Coppede F. Genetics environmental factors and the emerging role of epigenetics in neurodegenerative diseases. Mutat. Res. 2009; 667: 82-97.
  2. Correia S.C., Carvalho C., Cardoso S. et al. Mitochondrial preconditioning a potential neuroprotective strategy. Front Aging Neurosci. 2010; 2: 138.
  3. Migliore L., Coppede F. Environmental-induced oxidative stress in neurodegenerative disorders and aging. Mutat. Res. 2009; 674: 73-84.
  4. Bishop N.A., Lu T., Yankner B.A. Neural mechanisms of ageing and cognitive decline. Nature 2010; 464: 529-35.
  5. Boveris A., Navarro A. Brain mitochondrial dysfunction in aging. IUBMB Life 2008; 60: 308-14.
  6. Choi H.S., Kim H.J., Oh J.H. et al. therapeutic potentials of human adipose-derived stem cells on the mouse model of Parkinson's disease. Neurobiol. Aging. 2015; 36: 2885-92.
  7. Lin M.T., Beal M.F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases Nature 2006; 443: 787-95
  8. Moreira P.I., Zhu X., Wang X. et al. Mitochondria: a therapeutic target in neurodegeneration. Biochim. Biophys. Acta 2010; 1802: 212-20.
  9. Haigis M.C., Yankner B.A. The aging stress response. Mol. Cell. 2010; 40: 333-44.
  10. Navarro A., Boveris A. Brain mitochondrial dysfunction in aging, neurodegeneration, and Parkinson's disease Front Aging Neurosci 2010; 2: 34
  11. Navarro A , Boveris A The mitochondrial energy transduction system and the aging process Am J Physiol Cell. Physiol. 2007; 292: 670-86.
  12. Boveris A., Navarro A. Systemic and mitochondrial adaptive responses to moderate exercise in rodents Free Radic Biol Med 2008; 44: 224-9.
  13. Gilmer L.K., Ansari M.A., Roberts K.N., Scheff S.W. Age-related changes in mitochondrial respiration and oxidative damage in the cerebral cortex of the Fischer 344 rat. Mech. Ageing Dev. 2010; 131: 133-43.
  14. Knott A.B., Bossy-Wetzel E. Impairing the mitochondrial fission and fusion balance: a new mechanism of neurodegeneration. Ann. N. -Y. Acad. Sci. 2008; 1147: 283-92.
  15. Hallett P.J., Deleidi M., Astradsson A. et al. Successful function of autologous IPSC-derived dopamine neurons following transplantation in a non-human primate model of Parkinson's disease Cell Stem Cell 2015; 16(3): 269-74.
  16. Lovas J.R., Wang X. The meaning of mitochondrial movement to a neuron'slife. Biochim Biophys Acta. Disease. Free Radic. Res. 2015; 49(5): 681-91.
  17. Tyurina Y.Y., Polimova A.M., Maciel E. et al. LC/MS analysis of cardiolipins in substantia nigra and plasma of rotenone-treated rats: Implication for mitochondrial dysfunction in Parkinson's disease. Free Radic. Res. 2015; 49(5): 681-91.
  18. Kramer K.A., Oglesbee D., Hartman S.J. et al. Automated spectrophotometric analysis of mitochondrial respiratory chain complex enzyme activities in cultured skin fibroblasts Clinical Chemistry 2005; 51: 2110-6.
  19. Petrosillo G., Matera M., Casanova G. et al. Mitochondrial dysfunction in rat brain with aging Involvement of complex I, reactive oxygen species and cardiolipin. Neurochem. Int. 2008; 53: 126-31.
  20. Arduino D.M., Esteves A.R., Oliveira C.R., Cardoso S.M. Mitochondrial metabolism modulation: a new therapeutic approach for Parkinson's disease. CNS Neurol. Disord. Drug. Targets 2010; 9: 105-19.
  21. Rahimmi A., Khosrobakhsh F., Izadpanah E. et al. N-acetylcysteine prevents rotenone-induced Parkinson's disease in rat: An investigation into the interaction of parkin and Drp1 proteins. Brain Res. Bull. 2015; 113: 34-40.
  22. Valente A.X., das Neves R.P., Oliveira P.J. Epigenetic engineering to reverse the Parkinson's expression state Parkinsonism Relat. Disord. 2012; 18: 717-21.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies