Features of generation and differentiation of induced pluripotent stem cells into retinal cells for modeling human hereditary diseases

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The utilization of technology for the generation of induced pluripotent stem cells (iPSCs) and their subsequent differentiation is a promising approach for the study of disease pathogenesis and development of methods for treating optical neuropathies and retinopathy, which are the most common types of visual pathologies, in which retinal ganglion cells degenerate (consequently, optic nerve atrophy) or pigment epithelial cells and photoreceptors are affected, respectively. The prospect of patient-specific iPSCs has become a powerful alternative tool for discovering novel disease-causing mutations, studying genotype–phenotype relationships, screening therapeutic toxicity, and developing personalized cell therapy for optical neuropathies and retinopathies.

Numerous studies have demonstrated the possibility of creating different types of retinal cells from iPSCs, which provides a rapid development of the research area of human diseases for which no relevant animal models are available or access to primary human tissues and cells is limited.

This review presents various protocols for generating iPSCs from somatic cells and their subsequent differentiation, with an emphasis on the observed biological effects of the resulting cell cultures, including organoids, and discusses the prospects of using such models. The article may be useful to researchers studying the pathogenesis of various hereditary forms of blindness and developers of approaches for the treatment of these diseases who need a relevant cellular model.

Full Text

Restricted Access

About the authors

Evgeniy V. Lapshin

Sirius University of Science and Technology

Author for correspondence.
Email: lapshin.ev@talantiuspeh.ru
ORCID iD: 0000-0003-4404-2758
Russian Federation, Sirius, Krasnodar region

Yulia G. Gershovich

Sirius University of Science and Technology

Email: jg.gershovich@gmail.com
ORCID iD: 0000-0002-6740-438X

Cand. Sci. (Biology)

Russian Federation, Sirius, Krasnodar region

Ekaterina S. Minskaya

Sirius University of Science and Technology

Email: minskaya.es@talantiuspeh.ru
ORCID iD: 0000-0002-1137-373X
SPIN-code: 9750-6964

Cand. Sci. (Biology)

Russian Federation, Sirius, Krasnodar region

Alexander V. Karabelsky

Sirius University of Science and Technology

Email: karabelskiy.av@siriusuniversity.ru
ORCID iD: 0000-0002-6391-5182
SPIN-code: 6898-8414

Cand. Sci. (Biology)

Russian Federation, Sirius, Krasnodar region

References

  1. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–872. doi: 10.1016/j.cell.2007.11.019
  2. Maherali N, Sridharan R, Xie W, et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell. 2007;1(1):55–70. doi: 10.1016/j.stem.2007.05.014
  3. Park IH, Zhao R, West JA, et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 2008;451(7175):141–146. doi: 10.1038/nature06534
  4. Lowry WE, Richter L, Yachechko R, et al. Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci U S A. 2008;105(8):2883–2888. doi: 10.1073/pnas.0711983105
  5. Gill KP, Hewitt AW, Davidson KC, et al. Methods of retinal ganglion cell differentiation from pluripotent stem cells. Transl Vis Sci Technol. 2014;3(4):7. doi: 10.1167/tvst.3.3.7
  6. Chen M, Chen Q, Sun X, et al. Generation of retinal ganglion-like cells from reprogrammed mouse fibroblasts. Invest Ophthalmol Vis Sci. 2010;51(11):5970–5978. doi: 10.1167/iovs.09-4504
  7. Meng F, Wang X, Gu P, et al. Induction of retinal ganglion-like cells from fibroblasts by adenoviral gene delivery. Neuroscience. 2013;250:381–393. doi: 10.1016/j.neuroscience.2013.07.001
  8. Ohlemacher SK, Sridhar A, Xiao Y, et al. Stepwise differentiation of retinal ganglion cells from human pluripotent stem cells enables analysis of glaucomatous neurodegeneration. Stem Cells. 2016;34(6):1553–1562. doi: 10.1002/stem.2356
  9. Parameswaran S, Balasubramanian S, Babai N, et al. Induced pluripotent stem cells generate both retinal ganglion cells and photoreceptors: therapeutic implications in degenerative changes in glaucoma and age-related macular degeneration. Stem Cells. 2010;28(4):695–703. doi: 10.1002/stem.320
  10. Sluch VM, Davis CH, Ranganathan V, et al. Differentiation of human ESCs to retinal ganglion cells using a CRISPR engineered reporter cell line. Sci Rep. 2015;5:16595. doi: 10.1038/srep16595
  11. Tanaka T, Yokoi T, Tamalu F, et al. Generation of retinal ganglion cells with functional axons from human induced pluripotent stem cells. Sci Rep. 2015;5:8344. doi: 10.1038/srep08344
  12. Xie BB, Zhang XM, Hashimoto T, et al. Differentiation of retinal ganglion cells and photoreceptor precursors from mouse induced pluripotent stem cells carrying an Atoh7/Math5 lineage reporter. PLoS One. 2014;9(11):e112175. doi: 10.1371/journal.pone.0112175
  13. Wu YR, Wang AG, Chen YT, et al. Bioactivity and gene expression profiles of hiPSC-generated retinal ganglion cells in MT-ND4 mutated Leber’s hereditary optic neuropathy. Exp Cell Res. 2018;363(2):299–309. doi: 10.1016/j.yexcr.2018.01.020
  14. Yang YP, Chang YL, Lai YH, et al. Retinal circular RNA hsa_circ_0087207 expression promotes apoptotic cell death in induced pluripotent stem cell-derived Leber’s hereditary optic neuropathy-like models. Biomedicines. 2022;10(4):788. doi: 10.3390/biomedicines10040788
  15. Wong RCB, Lim SY, Hung SSC, et al. Mitochondrial replacement in an iPSC model of Leber’s hereditary optic neuropathy. Aging (Albany NY). 2017;9(4):1341–1350. doi: 10.18632/aging.101231
  16. Das A, Bell CM, Berlinicke CA, et al. Programmed switch in the mitochondrial degradation pathways during human retinal ganglion cell differentiation from stem cells is critical for RGC survival. Redox Biol. 2020;34:101465. doi: 10.1016/j.redox.2020.101465
  17. Buchholz DE, Pennington BO, Croze RH, et al. Rapid and efficient directed differentiation of human pluripotent stem cells into retinal pigmented epithelium. Stem Cells Transl Med. 2013;2(5):384–393. doi: 10.5966/sctm.2012-0163
  18. Reichman S, Terray A, Slembrouck A, et al. From confluent human iPS cells to self-forming neural retina and retinal pigmented epithelium. Proc Natl Acad Sci U S A. 2014;111(23):8518–8523. doi: 10.1073/pnas.1324212111
  19. Kuwahara A, Ozone C, Nakano T, et al. Generation of a ciliary margin-like stem cell niche from self-organizing human retinal tissue. Nat Commun. 2015;6:6286. doi: 10.1038/ncomms7286
  20. Meyer JS, Howden SE, Wallace KA, et al. Optic vesicle-like structures derived from human pluripotent stem cells facilitate a customized approach to retinal disease treatment. Stem Cells. 2011;29(8):1206–1218. doi: 10.1002/stem.674
  21. Yang YP, Nguyen PNN, Lin TC, et al. Glutamate stimulation dysregulates AMPA receptors-induced signal transduction pathway in Leber’s inherited optic neuropathy patient-specific hiPSC-derived retinal ganglion cells. Cells. 2019;8(6):625. doi: 10.3390/cells8060625
  22. Idelson M, Alper R, Obolensky A, et al. Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem Cell. 2009;5(4):396–408. doi: 10.1016/j.stem.2009.07.002
  23. Osakada F, Jin ZB, Hirami Y, et al. In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction. J Cell Sci. 2009;122(Pt 17):3169–3179. doi: 10.1242/jcs.050393
  24. Szabó NE, Zhao T, Zhou X, Alvarez-Bolado G. The role of Sonic hedgehog of neural origin in thalamic differentiation in the mouse. J Neurosci. 2009;29(8):2453–2466. doi: 10.1523/JNEUROSCI.4524-08.2009
  25. Badea TC, Williams J, Smallwood P, et al. Combinatorial expression of Brn3 transcription factors in somatosensory neurons: genetic and morphologic analysis. J Neurosci. 2012;32(3):995–1007. doi: 10.1523/JNEUROSCI.4755-11.2012
  26. Riazifar H, Jia Y, Chen J, et al. Chemically induced specification of retinal ganglion cells from human embryonic and induced pluripotent stem cells. Stem Cells Transl Med. 2014;3(4):424–432. doi: 10.5966/sctm.2013-0147
  27. Yang TC, Yarmishyn AA, Yang YP, et al. Mitochondrial transport mediates survival of retinal ganglion cells in affected LHON patients. Hum Mol Genet. 2020;29(9):1454–1464. doi: 10.1093/hmg/ddaa063
  28. Nie Z, Wang C, Chen J, et al. Abnormal morphology and function in retinal ganglion cells derived from patients-specific iPSCs generated from individuals with Leber’s hereditary optic neuropathy. Hum Mol Genet. 2023;32(2):231–243. doi: 10.1093/hmg/ddac190
  29. Ji D, Su X, Hu C, et al. Generation of an induced pluripotent stem cell line from a patient with leber’s hereditary optic neuropathy carrying a homoplasmic m.3635G > A mutation in the mitochondrial ND1 gene. Stem Cell Res. 2022;63:102858. doi: 10.1016/j.scr.2022.102858
  30. Teo AK, Arnold SJ, Trotter MW, et al. Pluripotency factors regulate definitive endoderm specification through eomesodermin. Genes Dev. 2011;25(3):238–250. doi: 10.1101/gad.607311
  31. International Stem Cell Initiative. Assessment of established techniques to determine developmental and malignant potential of human pluripotent stem cells. Nat Commun. 2018;9(1):1925. doi: 10.1038/s41467-018-04011-3
  32. Lidgerwood GE, Lim SY, Crombie DE, et al. Defined medium conditions for the induction and expansion of human pluripotent stem cell-derived retinal pigment epithelium. Stem Cell Rev Rep. 2016;12(2):179–188. doi: 10.1007/s12015-015-9636-2
  33. D’Antonio-Chronowska A, D’Antonio M, Frazer KA. In vitro differentiation of human iPSC-derived retinal pigment epithelium cells (iPSC-RPE). Bio Protoc. 2019;9(24):e3469. doi: 10.21769/BioProtoc.3469
  34. Hazim RA, Karumbayaram S, Jiang M, et al. Differentiation of RPE cells from integration-free iPS cells and their cell biological characterization. Stem Cell Res Ther. 2017;8(1):217. Corrected and republished from: Stem Cell Res Ther. 2019;10(1):52. doi: 10.1186/s13287-017-0652-9
  35. Sharma R, Khristov V, Rising A, et al. Clinical-grade stem cell-derived retinal pigment epithelium patch rescues retinal degeneration in rodents and pigs. Sci Transl Med. 2019;11(475):eaat5580. Corrected and republished from: Sci Transl Med. 2019;11(478). doi: 10.1126/scitranslmed.aat5580
  36. Rzhanova L, Kuznetsova A, Aleksandrova M. Reprogramming of differentiated mammalian and human retinal pigment epithelium: current achievements and prospects. Russian Journal of Developmental Biology. 2020;51(4):212–230. EDN: RXSBOK doi: 10.31857/S0475145020040060
  37. Hallam D, Hilgen G, Dorgau B, et al. Human-induced pluripotent stem cells generate light responsive retinal organoids with variable and nutrient-dependent efficiency. Stem Cells. 2018;36(10):1535–1551. doi: 10.1002/stem.2883
  38. Hau KL, Lane A, Guarascio R, Cheetham ME. Eye on a dish models to evaluate splicing modulation. Methods Mol Biol. 2022;2434:245–255. doi: 10.1007/978-1-0716-2010-6_16
  39. Christensen DRG, Brown FE, Cree AJ, et al. Sorsby fundus dystrophy — a review of pathology and disease mechanisms. Exp Eye Res. 2017;165:35–46. doi: 10.1016/j.exer.2017.08.014
  40. Hongisto H, Dewing JM, Christensen DR, et al. In vitro stem cell modelling demonstrates a proof-of-concept for excess functional mutant TIMP3 as the cause of Sorsby fundus dystrophy. J Pathol. 2020;252(2):138–150. doi: 10.1002/path.5506
  41. Galloway CA, Dalvi S, Hung SSC, et al. Drusen in patient-derived hiPSC-RPE models of macular dystrophies. Proc Natl Acad Sci U S A. 2017;114(39):E8214–E8223. doi: 10.1073/pnas.1710430114
  42. Mandai M, Watanabe A, Kurimoto Y, et al. Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med. 2017;376(11):1038–1046. doi: 10.1056/NEJMoa1608368
  43. Lukovic D, Artero Castro A, Kaya KD, et al. Retinal organoids derived from hiPSCs of an AIPL1-LCA patient maintain cytoarchitecture despite reduced levels of mutant AIPL1. Sci Rep. 2020;10(1):5426. doi: 10.1038/s41598-020-62047-2
  44. Perdigão PRL, Ollington B, Sai H, et al. Retinal organoids from an AIPL1 CRISPR/Cas9 knockout cell line successfully recapitulate the molecular features of LCA4 disease. Int J Mol Sci. 2023;24(6):5912. doi: 10.3390/ijms24065912
  45. Leung A, Sacristan-Reviriego A, Perdigão PRL, et al. Investigation of PTC124-mediated translational readthrough in a retinal organoid model of AIPL1-associated Leber congenital amaurosis. Stem Cell Reports. 2022;17(10):2187–2202. doi: 10.1016/j.stemcr.2022.08.005
  46. Eade KT, Ansell BRE, Giles S, et al. iPSC-derived retinal pigmented epithelial cells from patients with macular telangiectasia show decreased mitochondrial function. J Clin Invest. 2023;133(9):e163771. doi: 10.1172/JCI163771
  47. Liang Y, Tan F, Sun X, et al. Aberrant retinal pigment epithelial cells derived from induced pluripotent stem cells of a retinitis pigmentosa patient with the PRPF6 mutation. Int J Mol Sci. 2022;23(16):9049. doi: 10.3390/ijms23169049
  48. Lane A, Jovanovic K, Shortall C, et al. Modeling and rescue of RP2 retinitis pigmentosa using iPSC-derived retinal organoids. Stem Cell Reports. 2020;15(1):67–79. doi: 10.1016/j.stemcr.2020.05.007
  49. Sheremet NL, Mikaelyan AA, Andreev AYu, et al. Possibilities of an experimental damaging effect on the retinal pigment epithelium. Russian Annals of Ophthalmology. 2021;137(1):5–12. EDN: GARRBX doi: 10.17116/oftalma20211370115
  50. Neroeva NV, Neroev VV, Katargina LA, et al. Experimental stem cell replacement transplantation in retinal pigment epithelium atrophy. Russian Annals of Ophthalmology. EDN: DESQXT 2022;138(3):7–15. doi: 10.17116/oftalma20221380317
  51. Kharitonov AE, Surdina AV, Lebedeva OS, et al. Possibilities for using pluripotent stem cells for restoring damaged eye retinal pigment epithelium. Acta Naturae. 2018;10(3):30–39. EDN: YLQJET doi: 10.32607/20758251-2018-10-3-30-39
  52. Nakano T, Ando S, Takata N, et al. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell. 2012;10(6):771–785. doi: 10.1016/j.stem.2012.05.009
  53. Mellough CB, Collin J, Queen R, et al. Systematic comparison of retinal organoid differentiation from human pluripotent stem cells reveals stage specific, cell line, and methodological differences. Stem Cells Transl Med. 2019;8(7):694–706. doi: 10.1002/sctm.18-0267
  54. Zhong X, Gutierrez C, Xue T, et al. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat Commun. 2014;5:4047. doi: 10.1038/ncomms5047
  55. Wahlin KJ, Maruotti JA, Sripathi SR, et al. Photoreceptor outer segment-like structures in long-term 3D retinas from human pluripotent stem cells. Sci Rep. 2017;7(1):766. doi: 10.1038/s41598-017-00774-9
  56. Zhang Z, Xu Z, Yuan F, et al. Retinal organoid technology: where are we now? Int J Mol Sci. 2021;22(19):10244. doi: 10.3390/ijms221910244
  57. Singh MS, Park SS, Albini TA, et al. Retinal stem cell transplantation: balancing safety and potential. Prog Retin Eye Res. 2020;75:100779. doi: 10.1016/j.preteyeres.2019.100779
  58. Reichman S, Slembrouck A, Gagliardi G, et al. Generation of storable retinal organoids and retinal pigmented epithelium from adherent human iPS cells in xeno-free and feeder-free conditions. Stem Cells. 2017;35(5):1176–1188. doi: 10.1002/stem.2586

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic presentation of stepwise morphologic changes in cell culture during differentiation into retinal cells. ИПСК — induced pluripotent stem cells, ПЭС — retinal pigment epithelium, ГКС — retinal ganglion cells

Download (1MB)

Copyright (c) 2024 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies