CAR-dependent anti-metastatic activity of modified NK cell line YT



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Adoptive T- and NK-cells transfer with chimeric antigenic receptors (CAR) is considered as a promising anticancer strategy. Chimeric antigenic receptors are artificial molecules that provide activation of the cells carrying them when they contact with a specific antigen to induce cell death. Unlike T cells, NK cells have no T-cell receptors, which prevent "graft-versus-host” disease under allograft transplantation. The aim of this work was to study antimetastatic activity of a double-modified human NK cell line YT - Cyto-CAR-YT-Lact cells carrying CAR to the PSMA protein and expressing antiapoptotic protein lactaptin. The BrCCh4e-134 breast carcinoma line with high PSMA expression was constructed by lentiviral transduction. The YT double modified NK cell line, Cyto-CAR-YT-Lact, expressing functional anti-PSMA CAR and carrying a deletion of the Shp-2 gene encoding the Shp-2 protein, a negative regulator of NK cell activation, was used as effector cells. The cytotoxic activity of Cyto-CAR-YT-Lact cells was tested on PSMA-positive BrCCh4e-134 cells and on parental BrCCh4e cell in vitro in real-time mode. The antimetastasis activity of Cyto-CAR-YT-Lact cells was analyzed in SCID and NOD/SCID mice with spontaneously metastases and intravenously transplanted PSMA-positive BrCCh4e-134 cells. Cyto-CAR-YT-Lact cells efficiently reduced the viability of PSMA-positive tumor cells and moderately PSMA-negative target cells in vitro. As a tumor model, we used human breast cancer cells that overexpress PSMA as a transgene and are characterized by metastasis to the mediastinal lymph nodes being transplanted on mice. It was shown that a single intravenous administration of the Cyto-CAR-YT-Lact cells suppressed the development of metastases in the spontaneous metastasis model and when tumor cells were introduced into the bloodstream. The reaction of the primary tumor node to Cyto-CAR-YT-Lact therapy was not detected. Thus, the use of modified NK cells can be considered as a promising therapeutic approach for suppressing metastasis, but not for suppressing the growth of the primary tumor node.

Full Text

Restricted Access

About the authors

O. A Koval

Institute of Chemical Biology and Fundamental Medicine SB RAS; Novosibirsk State University

Email: o_koval@ngs.ru
Novosibirsk, Russia

V. G Subrakova

Novosibirsk State University; Institute of Molecular and Cellular Biology SB RAS

Email: o_koval@ngs.ru
Novosibirsk, Russia

A. A Nushtaeva

Institute of Chemical Biology and Fundamental Medicine SB RAS

Email: o_koval@ngs.ru
Novosibirsk, Russia

T. N Belovezhets

Institute of Molecular and Cellular Biology SB RAS

Email: o_koval@ngs.ru
Novosibirsk, Russia

O. A Troitskaya

Institute of Chemical Biology and Fundamental Medicine SB RAS

Email: o_koval@ngs.ru
Novosibirsk, Russia

M. S Ermakov

Institute of Chemical Biology and Fundamental Medicine SB RAS; Novosibirsk State University

Email: o_koval@ngs.ru
Novosibirsk, Russia

M. E Varlamov

Institute of Chemical Biology and Fundamental Medicine SB RAS; Novosibirsk State University

Email: o_koval@ngs.ru
Novosibirsk, Russia

A. N Chikaev

Institute of Molecular and Cellular Biology SB RAS

Email: o_koval@ngs.ru
Novosibirsk, Russia

E. V Kuligina

Institute of Chemical Biology and Fundamental Medicine SB RAS

Email: o_koval@ngs.ru
Novosibirsk, Russia

S. V Kulemzin

Institute of Molecular and Cellular Biology SB RAS

Email: o_koval@ngs.ru
Novosibirsk, Russia

AA. A Gorchakov

Novosibirsk State University; Institute of Molecular and Cellular Biology SB RAS

Email: o_koval@ngs.ru
Novosibirsk, Russia

A. V Taranin

Novosibirsk State University; Institute of Molecular and Cellular Biology SB RAS

Email: o_koval@ngs.ru
Novosibirsk, Russia

V. A Richter

Institute of Chemical Biology and Fundamental Medicine SB RAS

Email: o_koval@ngs.ru
Novosibirsk, Russia

References

  1. Кулемзин С.В., Кузнецова В.В., Мамонкин М. и др. Основы дизайна химерных антигенных рецепторов. Acta Naturae 2017; 9: 6-15.
  2. Chiossone L., Dumas P.Y., Vienne M. et al. Natural killer cells and other innate lymphoid cells in cancer. Nat. Rev. Immunol. 2018; 18: 671-88.
  3. Lorenzo-Herrero S., Lôpez-Soto A., Sordo-Bahamonde C. et al. NK cell-based immunotherapy in cancer metastasis. Cancers 2018; 11: 29.
  4. Arabi F., Torabi-Rahvar M., Shariati A. et al. Antigenic targets of CAR T Cell Therapy. A retrospective view on clinical trials. Experimental Cell Research 2018; 369: 1-10.
  5. Mannweiler S., Amersdorfer P., Trajanoski S. et al. Heterogeneity of Prostate-Specific Membrane Antigen (PSMA) Expression in Prostate Carcinoma with Distant Metastasis. Pathol. Oncol. Res. 2009; 15: 167-72.
  6. Hillerdal V., Essand M. Chimeric Antigen Receptor-Engineered T Cells for the Treatment of Metastatic Prostate Cancer. BioDrugs 2015; 29: 75-89.
  7. Rehman A.U., Rahman M.U., Khan M.T. et al. The Landscape of Protein Tyrosine Phosphatase (Shp2) and Cancer. CPD 2019; 24: 3767-77.
  8. Коваль О.А., Волкова О.Ю., Горчаков А.А. и др. Сравнительный анализ активности лактаптина, полученного в про- и эукариотических системах экспрессии. Вавиловский журнал генетики и селекции 2017; 21: 764-9.
  9. Субракова В.Г., Кулемзин С.В., Беловежец Т.Н. и др. Нокаут гена Shp-2 приводит к повышению CAR-опосредованной цитотоксичности NK-клеток линии YT. Вавиловский журнал генетики и селекции. В печати 2019. (Subrakova V.G., Kulemzin S.V., Belovezhets T.N. et al. Shp-2 gene knockout upregulates CAR-driven cytotoxicity of YT
  10. Kingston R.E., Chen C.A., Rose J.K. Calcium Phosphate Transfection. Current Protocols in Molecular Biology 2003; 63: 9.1.1-11.
  11. O’Doherty U., Swiggard W.J., Malim M.H. Human Immunodeficiency Virus Type 1 Spinoculation Enhances Infection through Virus Binding. Journal of Virology 2000; 74: 10074-80.
  12. Nushtaeva A.A., Karpushina A.A., Ermakov M.S. et al. Establishment of primary human breast cancer cell lines using “pulsed hypoxia” method and development of metastatic tumor model in immunodeficient mice. Cancer Cell Int. 2019; 19: 46.
  13. Кулемзин С.В., Чикаев Н.А., Волкова О.Ю. и др. Модульная система лентивирусных векторов для работы с химерными антигенными рецепторами. Биоорганическая Химия 2017; 43: 124-32. (Kulemzin S.V., Chikaev N.A., Volkova O.Y. et al. Modular lentiviral vector system for chimeric antigen receptor design optimization. Russian Journal of Bioorganic Chemistry 2017; 43: 124-32).
  14. Rosenbaum L. Tragedy, Perseverance, and Chance - The Story of CAR-T Therapy. N. Engl. J. Med. 2017; 377: 1313-5.
  15. Shultz L.D., Lyons B.L., Burzenski L.M. et al. Human Lymphoid and Myeloid Cell Development in NOD/LtSz-scid IL2R y nul Mice Engrafted with Mobilized Human Hemopoietic Stem Cells. J. Immunol. 2005; 174: 6477-89.
  16. Deng Z., Wu Y., Ma W. et al. Adoptive T-cell therapy of prostate cancer targeting the cancer stem cell antigen EpCAM. BMC Immunol. 2015; 16: 1.
  17. Zhang Q., Zhang H., Ding J. et al. Combination Therapy with EpCAM-CAR-NK-92 Cells and Regorafenib against Human Colorectal Cancer Models. Journal of Immunology Research 2018; 2018: 1-11.
  18. Bubendorf L., Schopfer A., Wagner U. et al. Metastatic patterns of prostate cancer: An autopsy study of 1,589 patients. Human Pathology 2000; 31: 578-83.
  19. Ren D., Yang Q., Dai Y. et al. Oncogenic miR-210-3p promotes prostate cancer cell EMT and bone metastasis via NF-kB signaling pathway. Mol. Cancer 2017; 16: 117.
  20. Chowdhury D., Lieberman J. Death by a Thousand Cuts: Granzyme Pathways of Programmed Cell Death. Annu. Rev. Immunol. 2008; 26: 389-420.
  21. Shah N.N., Fry T.J. Mechanisms of resistance to CAR T cell therapy. Nat. Rev. Clin. Oncol. 2019; 16: 372-85.
  22. Martinez M., Moon E.K. CAR T Cells for Solid Tumors: New Strategies for Finding, Infiltrating, and Surviving in the Tumor Microenvironment. Front. Immunol. 2019; 10: 128.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies