The effect of TiO2 nanotubes layered on surfaces of titanium to be used in implantology on the proliferative and secretory activity of fibroblasts
- Authors: Fadeyev F.A1, Khrunyk Y.Y2,3, Belikov S.V2, Lugovets D.V1, Gubaeva O.V1, Leontyev S.L1, Sazonov S.V1, Popov A.A2
-
Affiliations:
- Institute of Medical Cell Technologies
- Ural Federal University
- B.N. Eltsin Institute of High Temperature Electrochemistry UB of the RAS
- Issue: Vol 14, No 4 (2019)
- Pages: 54-60
- Section: Articles
- URL: https://genescells.ru/2313-1829/article/view/122205
- DOI: https://doi.org/10.23868/201912032
- ID: 122205
Cite item
Abstract
Full Text

About the authors
F. A Fadeyev
Institute of Medical Cell Technologies
Email: fdf79@mail.ru
Ekaterinburg, Russia
Y. Y Khrunyk
Ural Federal University; B.N. Eltsin Institute of High Temperature Electrochemistry UB of the RAS
Email: fdf79@mail.ru
Ekaterinburg, Russia
S. V Belikov
Ural Federal University
Email: fdf79@mail.ru
Ekaterinburg, Russia
D. V Lugovets
Institute of Medical Cell Technologies
Email: fdf79@mail.ru
Ekaterinburg, Russia
O. V Gubaeva
Institute of Medical Cell Technologies
Email: fdf79@mail.ru
Ekaterinburg, Russia
S. L Leontyev
Institute of Medical Cell Technologies
Email: fdf79@mail.ru
Ekaterinburg, Russia
S. V Sazonov
Institute of Medical Cell Technologies
Email: fdf79@mail.ru
Ekaterinburg, Russia
A. A Popov
Ural Federal University
Email: fdf79@mail.ru
Ekaterinburg, Russia
References
- Civantos A., Martinez-Campos E., Ramos V. et al. Titanium Coatings and Surface Modifications: Toward Clinically Useful Bioactive Implants. ACS Biomater. Sci. Eng. 2017; 3: 1245-61.
- Jemat A., Ghazali M.J., Razali M. et al. Surface Modifications and Their Effects on Titanium Dental Implants. Biomed. Res. Int. 2015; 2015: 791725.
- Escadaa A.L., Nakazatoa R.Z., Claroa A.P. Influence of Anodization Parameters in the TiO2 Nanotubes Formation on Ti-7.5Mo Alloy Surface for Biomedical Application. Materials Research 2017; 20(5): 1282-90.
- Фадеев Ф.А., Хрунык Ю.Я., Беликов С.В. и др. Адгезия фибробластов кожи человека на модифицированном для применения в имплантологии титане с анодированным нанотрубчатым покрытием. Доклады академии наук 2019; 486(1): 123-6.
- Gittens R.A., Olivares-Navarrete R., Schwartz Z. et al. Implant Osseointegration and the Role of Microroughness and Nanostructures: Lessons for Spine Implants. Acta Biomater. 2014; 10(8): 3363-71.
- Akilbekova D., Bratlie K.M. Quantitative Characterization of Collagen in the Fibrotic Capsule Surrounding Implanted Polymeric Microparticles through Second Harmonic Generation Imaging. PLoS One 2015; 10(6): e0130386.
- Lavenus S., Louarn G., Layrolle P. Nanotechnology and Dental Implants. Int. J. Biomater. 2010; 2010: 915327.
- Khullar D., Duggal N., Kaur S. Nanotechnology: An upcoming frontier in implant dentistry. Saint. Int. Dent. J. 2015; 1: 86-90.
- Фадеев Ф.А., Улитко М.В., Луговец Д.В. и др. Оптимизация технологии культивирования дермальных фибробластов для терапевтических целей с помощью роботизированной станции. Гены и клетки 2016; IX(3): 108-12.
- Rolfe B.E., Mooney J.S., Zhang B. et al. The Fibrotic Response to Implanted Biomaterials: Implications for Tissue Engineering. In: D. Eberli, editor. Regenerative Medicine and Tissue Engineering - Cells and Biomaterials. London: Intech Open; 2011. p. 551-68
- Das K., Bose S., Bandyopadhyay A. TiO2 nanotubes on Ti: Influence of nanoscale morphology on bone cell-materials interaction. J. Biomed. Mat. Res. A 2009; 90(1): 225-37.
- Su E.P., Justin D.F., Pratt C.R. et al. Effects of titanium nanotubes on the osseointegration, cell differentiation, mineralisation and antibacterial properties of orthopaedic implant surfaces. Bone Joint J. 2018; 100-B(1 Supple A): 9-16.
- Smith B.S., Yoriya S., Johnson T. et al. Dermal fibroblast and epidermal keratinocyte functionality on titania nanotube arrays. Acta Biomater. 2011; 7(6): 2686-96.
- Lin S.P., Huang S.Y., Chen S.F. et al. Investigation of the interfacial effects of small chemical-modified TiO2 nanotubes on 3T3 fibroblast responses. ACS Appl. Mater. Interfaces 2014; 6(15): 12071-82.
- Hazan R., Sreekantan S., Khalil A.A. et al. Surface Engineering of Titania for Excellent Fibroblast 3T3 Cell-Metal Interaction. Journal of Physical Science 2009; 20(1): 35-47.
- Wei H., Wu S., Feng Z. et al. Increased fibroblast functionality on CNN2-loaded titania nanotubes. Int. J. Nanomedicine 2012; 7: 1091-100.
- Aumailley M., Krieg T., Razaka G. et al. Influence of cell density on collagen biosynthesis in fibroblast cultures. Biochem. J. 1982; 206(3): 505-10.
- Barnes T.C., Anderson M.E., Moots R.J. The Many Faces of Interleukin-6: The Role of IL-6 in Inflammation, Vasculopathy, and Fibrosis in Systemic Sclerosis. International Journal of Rheumatology 2011; 2011: 721608.
- Quabius E.S., Ossenkop L., Harder S. et al. Dental implants stimulate expression of Interleukin-8 and its receptor in human blood-An in vitro approach. J. Biomed. Mater. Res. Part B 2012; 100B: 1283-8.
- Kusakawa Y., Yoshida E., Hayakawa T. Protein Adsorption to Titanium and Zirconia Using a Quartz Crystal Microbalance Method. Biomed. Res. Int. 2017; 2017: 1521593.
- Yang Y., Cavin R., Ong J.L. Protein adsorption on titanium surfaces and their effect on osteoblast attachment. J. Biomed. Mater. Res. A 2003; 67(1): 344-9.
