The effect of TiO2 nanotubes layered on surfaces of titanium to be used in implantology on the proliferative and secretory activity of fibroblasts



Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

Nowadays titanium and its alloys are the most widely used metallic materials in medicine. In comparison with other metals, titanium has several advantages including biocompatibility, good mechanic properties and corrosion resistance. This research was focused on the studies of proliferative and secretory characteristics of human fibroblasts, cultured on nanotube-layered titanium surfaces as well as the levels of collagen and non-collagenous proteins deposition. Experiments were performed with 2 fibroblast lines isolated from skin samples of 2 donors. Fibroblasts were grown on titanium disks with untreated and anodized surfaces and on the tissue culture treated plastic. Cells were fixed after 3, 5, 7 and 9 days of cultivation. At each time point six samples were analyzed for each surface type. Cell density was estimated by counting cell nuclei, stained with DAPI. IL-6, IL-8/CXCL8 and pro-collagen I concentrations were measured by ELISA, the quantity of collagen and non-collagenic proteins on surfaces was calculated by measuring the level of absorption of Sirius Red and Fast Green dyes, respectively. The results of experiments indicate that the modification of titanium surface with nanotubes does not trigger the formation of fibrous capsule during osseointegration. However, elevated levels of secreted chemokine IL-8/CXCL8, which attracts neutrophils, were observed on anodized samples thus implying possible increased inflammatory response. To get more insights on the role of nanotubes in osseointegration further research is needed.

Толық мәтін

Рұқсат жабық

Авторлар туралы

F. Fadeyev

Institute of Medical Cell Technologies

Email: fdf79@mail.ru
Ekaterinburg, Russia

Y. Khrunyk

Ural Federal University; B.N. Eltsin Institute of High Temperature Electrochemistry UB of the RAS

Email: fdf79@mail.ru
Ekaterinburg, Russia

S. Belikov

Ural Federal University

Email: fdf79@mail.ru
Ekaterinburg, Russia

D. Lugovets

Institute of Medical Cell Technologies

Email: fdf79@mail.ru
Ekaterinburg, Russia

O. Gubaeva

Institute of Medical Cell Technologies

Email: fdf79@mail.ru
Ekaterinburg, Russia

S. Leontyev

Institute of Medical Cell Technologies

Email: fdf79@mail.ru
Ekaterinburg, Russia

S. Sazonov

Institute of Medical Cell Technologies

Email: fdf79@mail.ru
Ekaterinburg, Russia

A. Popov

Ural Federal University

Email: fdf79@mail.ru
Ekaterinburg, Russia

Әдебиет тізімі

  1. Civantos A., Martinez-Campos E., Ramos V. et al. Titanium Coatings and Surface Modifications: Toward Clinically Useful Bioactive Implants. ACS Biomater. Sci. Eng. 2017; 3: 1245-61.
  2. Jemat A., Ghazali M.J., Razali M. et al. Surface Modifications and Their Effects on Titanium Dental Implants. Biomed. Res. Int. 2015; 2015: 791725.
  3. Escadaa A.L., Nakazatoa R.Z., Claroa A.P. Influence of Anodization Parameters in the TiO2 Nanotubes Formation on Ti-7.5Mo Alloy Surface for Biomedical Application. Materials Research 2017; 20(5): 1282-90.
  4. Фадеев Ф.А., Хрунык Ю.Я., Беликов С.В. и др. Адгезия фибробластов кожи человека на модифицированном для применения в имплантологии титане с анодированным нанотрубчатым покрытием. Доклады академии наук 2019; 486(1): 123-6.
  5. Gittens R.A., Olivares-Navarrete R., Schwartz Z. et al. Implant Osseointegration and the Role of Microroughness and Nanostructures: Lessons for Spine Implants. Acta Biomater. 2014; 10(8): 3363-71.
  6. Akilbekova D., Bratlie K.M. Quantitative Characterization of Collagen in the Fibrotic Capsule Surrounding Implanted Polymeric Microparticles through Second Harmonic Generation Imaging. PLoS One 2015; 10(6): e0130386.
  7. Lavenus S., Louarn G., Layrolle P. Nanotechnology and Dental Implants. Int. J. Biomater. 2010; 2010: 915327.
  8. Khullar D., Duggal N., Kaur S. Nanotechnology: An upcoming frontier in implant dentistry. Saint. Int. Dent. J. 2015; 1: 86-90.
  9. Фадеев Ф.А., Улитко М.В., Луговец Д.В. и др. Оптимизация технологии культивирования дермальных фибробластов для терапевтических целей с помощью роботизированной станции. Гены и клетки 2016; IX(3): 108-12.
  10. Rolfe B.E., Mooney J.S., Zhang B. et al. The Fibrotic Response to Implanted Biomaterials: Implications for Tissue Engineering. In: D. Eberli, editor. Regenerative Medicine and Tissue Engineering - Cells and Biomaterials. London: Intech Open; 2011. p. 551-68
  11. Das K., Bose S., Bandyopadhyay A. TiO2 nanotubes on Ti: Influence of nanoscale morphology on bone cell-materials interaction. J. Biomed. Mat. Res. A 2009; 90(1): 225-37.
  12. Su E.P., Justin D.F., Pratt C.R. et al. Effects of titanium nanotubes on the osseointegration, cell differentiation, mineralisation and antibacterial properties of orthopaedic implant surfaces. Bone Joint J. 2018; 100-B(1 Supple A): 9-16.
  13. Smith B.S., Yoriya S., Johnson T. et al. Dermal fibroblast and epidermal keratinocyte functionality on titania nanotube arrays. Acta Biomater. 2011; 7(6): 2686-96.
  14. Lin S.P., Huang S.Y., Chen S.F. et al. Investigation of the interfacial effects of small chemical-modified TiO2 nanotubes on 3T3 fibroblast responses. ACS Appl. Mater. Interfaces 2014; 6(15): 12071-82.
  15. Hazan R., Sreekantan S., Khalil A.A. et al. Surface Engineering of Titania for Excellent Fibroblast 3T3 Cell-Metal Interaction. Journal of Physical Science 2009; 20(1): 35-47.
  16. Wei H., Wu S., Feng Z. et al. Increased fibroblast functionality on CNN2-loaded titania nanotubes. Int. J. Nanomedicine 2012; 7: 1091-100.
  17. Aumailley M., Krieg T., Razaka G. et al. Influence of cell density on collagen biosynthesis in fibroblast cultures. Biochem. J. 1982; 206(3): 505-10.
  18. Barnes T.C., Anderson M.E., Moots R.J. The Many Faces of Interleukin-6: The Role of IL-6 in Inflammation, Vasculopathy, and Fibrosis in Systemic Sclerosis. International Journal of Rheumatology 2011; 2011: 721608.
  19. Quabius E.S., Ossenkop L., Harder S. et al. Dental implants stimulate expression of Interleukin-8 and its receptor in human blood-An in vitro approach. J. Biomed. Mater. Res. Part B 2012; 100B: 1283-8.
  20. Kusakawa Y., Yoshida E., Hayakawa T. Protein Adsorption to Titanium and Zirconia Using a Quartz Crystal Microbalance Method. Biomed. Res. Int. 2017; 2017: 1521593.
  21. Yang Y., Cavin R., Ong J.L. Protein adsorption on titanium surfaces and their effect on osteoblast attachment. J. Biomed. Mater. Res. A 2003; 67(1): 344-9.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Eco-Vector, 2019



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>