The obtaining and characterization new soft tissue sarcoma and osteogenic sarcoma cell lines for translational research



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The rare occurrence, high histological heterogeneity, changing classification standards, and complexity of cultivation are the reasons for the failure of soft tissue and bone sarcomas (STBS) cell lines required for large-scale preclinical studies. Obtaining and characterization new STBS cell lines is the great importance for creating cell models that allow us to study the processes of oncogenesis and metastasis of mesenchymal tumors in the development of new treatment methods. Purpose: to create a collection of new characterized STBS cell lines suitable for translational research. In the study were used tumor samples from 71 patients of the N.N. Petrov National Medical Research Center of Oncology with the diagnosis of "sarcoma”. The samples were received during the operation in period 2013-2020. A standard protocol was developed for the cultivation of STBS cells. The proliferative, invasive and migration activity of the obtained cell lines in monolayer and spheroids was studied, HLA typing was performed, and the expression of cancer-testicular genes (CTG) and stem cell markers (CD133 and ALDH1). A collection of STBS cell lines, which includes 54 stable cell lines of 18 histological subtypes, including 39 soft tissue and 15 bone sarcomas cultures, with the metastatic culture of 81.5% was created (n=44). In the process of long-term cultivation there was an increase in the proliferative activity of sarcomas cells (p<0,05). Statistically significant differences in migration activity parameters between soft tissue and bone sarcomas cultures were revealed (p<0,05). A high degree of heterogeneity of the transcriptional activity of the studied CTG was found, and the absence of expression was detected in 19.2% of cases. The activity of the PRAME (55.8%) and GAGE1 (50%) genes was detected with the highest frequency (rho=0.5025; p=0.00015). PASD1 expression correlated with GAGE1 (rho=0.6951; p=0.00001), PRAME (rho=0.5743; p=0.00001). Co-expression of the NY-ESO-1 and MAGEA1 genes was also detected: (rho=0.4027; p=0.00308). The inverse correlation of average strength between the number of ALDH1 + cells and CD133+cells in cultures and the value of time to progression in patients (rho=-0.505, p=0.033; rho=-0.513, p=0.021, respectively) was established. The received and characterized cell lines can become an important component for realization of perspective translational research, a demanded tool for solution of various tasks of modern medicine, such as proteomic research, revealing of important signal mechanisms, search of target molecules for creation of new therapeutic approaches.

Full Text

Restricted Access

About the authors

N. A Avdonkina

N.N. Petrov National Medical Research Center of Oncology

Email: nataliaavdonkina@gmail.com

A. B Danilova

N.N. Petrov National Medical Research Center of Oncology

V. A Misyurin

N.N. Blokhin National Medical Research Center of Oncology

E. A Prosekina

N.N. Petrov National Medical Research Center of Oncology

N. V Emelyanova

N.N. Petrov National Medical Research Center of Oncology

T. L Nekhaeva

N.N. Petrov National Medical Research Center of Oncology

O. V Skachkova

N.N. Petrov National Medical Research Center of Oncology

A. V Novik

N.N. Petrov National Medical Research Center of Oncology

N. P Pipia

N.N. Petrov National Medical Research Center of Oncology

G. I Gafton

N.N. Petrov National Medical Research Center of Oncology

E. V Levchenko

N.N. Petrov National Medical Research Center of Oncology

A. M Belyaev

N.N. Petrov National Medical Research Center of Oncology

I. A Baldueva

N.N. Petrov National Medical Research Center of Oncology

References

  1. Каприн А.Д., Старинский В.В., Петрова Г.В. Состояние онкологической помощи населению россии в 2018 году. Москва: МНИоИ им. П.А. Герцена; 2019.
  2. Мацко Д.Е. Современные представления о морфологической классификации сарком мягких тканей и их практическое значение. Практическая онкология 2013; 14(2): 77-86.
  3. Gey G.O., Coffman W.D., Kubicek M.T.T. Tissue culture studies of the proliferative capacity of cervical carcinoma and normal epithelium. Cancer Res. 1952; 12: 264-5.
  4. Fletcher C.D.M., Bridge J.A., Hogendoorn P.C.W. et al. WHO Classification of Tumours of Soft Tissue and Bone. 4th ed. Lion [France]: IARC Press; 2013.
  5. Pan X., Yoshida A., Kawai A. et al. Current status of publicly available sarcoma cell lines for use in proteomic studies. Expert Rev. Proteomics 2016; 13(2): 227-40.
  6. Freshney R.I. Culture of animal cells: a manual of basic technique and specialized applications. 6th ed. Hoboken New Jersey USA: John Wiley & Sons, Inc.; 2010.
  7. Данилов А.о., Ларин С.С., Данилова А.Б. и др. Усовершенствование метода приготовления аутологичных модифицированных противоопухолевых вакцин для активной специфической иммунотерапии больных с диссеминированными солидными опухолями. Вопросы онкологии 2004; 50(2): 219-27.
  8. Moniri M.R., Young A., Reinheimer K. et al. Dynamic assessment of cell viability, proliferation and migration using real time cell analyzer system (RTCA). Cytotechnology 2015; 67(2): 379-86.
  9. Nowak J., Mika-Witkowska R., Graczyk-Pol E. Genetic methods of HLA typing molecular aspects of hematologic malignancies principles and practice. In: Witt M., Dawidowska M., Szczepanski T., editors. Molecular aspects of hematologic malignancies. Berlin Heidelberg: Springer; 2012. p. 325-39.
  10. Chiu C.H., Lei K., Yeh W. et al. Comparison between xCELLigence biosensor technology and conventional cell culture system for real-time monitoring human tenocytes proliferation and drugs cytotoxicity screening. J. Orthop. Surg. Res. 2017; 12: 149.
  11. Солодовник A.A., Мкртчан А.С., Мисюрин В.А. и др. Экспрессия раково-тестикулярных генов PRAME, NY-ESO1, GAGE1, MAGE A3, MAGE A6 MAGE A12, SSX1, SLLP1, PASD1 у больных множественной миеломой, их влияние на показатели общей выживаемости и скорость возникновения рецидива. Успехи молекулярной онкологии 2018; 5: 63-70.
  12. Mele L., Liccardo D., Tirino V. Evaluation and Isolation of Cancer Stem Cells Using ALDH Activity Assay. Methods Mol. Biol. 2018; 1692: 43-8.
  13. Ryu N.E., Lee S.H., Park H. Spheroid Culture System Methods and Applications for Mesenchymal Stem Cells. Cells 2019; 8(12): 1620.
  14. Breslin S., O’Driscoll L. Three-dimensional cell culture: the missing link in drug discovery. Drug Discovery Today 2013; 18(5-6): 240-9.
  15. Charrad M., Ghazzali N., Boiteau V. et al. NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set. Journal of Statistical Software 2014; 61(6): 1-36.
  16. Hoffman R.M. Patient-derived orthotopic xenografts: Better mimic of metastasis than subcutaneous xenografts. Nat. Rev. Cancer 2015; 15: 451-2.
  17. Drost J., Clevers H. Organoids in cancer research. Nat. Rev. Cancer 2018; 18: 407-18.
  18. Gazdar A.F., Gao B., Minna J.D. Lung cancer cell lines: Useless artifacts or invaluable tools for medical science? Lung Cancer 2010; 68(3): 309-18.
  19. Vincent K.M., Postovit L.M. Investigating the utility of human melanoma cell lines as tumour models. Oncotarget 2017; 8(6): 10498-509.
  20. Hattori E., Oyama R., Kondo T. Systematic Review of the Current Status of Human Sarcoma Cell Lines. Cells 2019; 8(2): 157.
  21. Salawu A., Fernando M., Hughes D. et al. Establishment and molecular characterisation of seven novel soft-tissue sarcoma cell lines. Br.J. Cancer 2016; 115(9): 1058-68.
  22. Lohberger B., Stuendl N., Leithner A. et al. Establishment of a novel cellular model for myxofibrosarcoma heterogeneity. Sci. Rep. 2017; 7: 44700.
  23. Boegel S., Lower M., Bukur T. et al. A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines. Oncoim-munology 2014; 3(8): e954893.
  24. Qi Y., Wang C.C., He Y.L. et al. The correlation between morphology and the expression of TGF-p signaling pathway proteins and epithelial-mesenchymal transition-related proteins in synovial sarcomas. Int. J. Clin. Exp. Pathol. 2013; 6(12): 2787-99.
  25. Gordeeva O. Cancer-testis antigens: Unique cancer stem cell biomarkers and targets for cancer therapy. Semin. Cancer Biol. 2018; 53: 75-89.
  26. Roszik J., Wang W.L., Livingston J.A. et al. Overexpressed PRAME is a potential immunotherapy target in sarcoma subtypes. Clin. Sarcoma Res. 2017; 7: 11.
  27. Al-Khadairi G., Decock J. Cancer Testis Antigens and Immunotherapy: Where Do We Stand in the Targeting of PRAME? Cancers (Basel) 2019; 11(7): pii: E984.
  28. Tan P., Zou C., Yong B. et al. Expression and prognostic relevance of PRAME in primary osteosarcoma. Biochem. Biophys. Res. Commun. 2012; 419(4): 801-8.
  29. Iura K., Maekawa A., Kohashi K. et al. Cancer-testis antigen expression in synovial sarcoma: NY-ESO-1, PRAME, MAGEA4, and MAGEA1. Hum. Pathol. 2017; 61: 130-9.
  30. Iura K., Kohashi K., Hotokebuchi Y. et al. Cancer-testis antigens PRAME and NY-ESO-1 correlate with tumour grade and poor prognosis in myxoid liposarcoma. Pathol. Clin. Res. 2015; 1(3): 144-59.
  31. Li R., Guo M., Song L. PAS Domain Containing Repressor 1 (PASD1) Promotes Glioma Cell Proliferation Through Inhibiting Apoptosis In Vitro. Med. Sci. Monit. 2019; 25: 6955-64.
  32. Yousef S., Heise J., Lajmi N. et al. Cancer-testis antigen SLLP1 represents a promising target for the immunotherapy of multiple myeloma. J. Transl. Med. 2015; 13: 197.
  33. Toledo-Guzman M.E., Hernandez M.I., Gomez-Gallegos AA. et al. ALDH as a Stem Cell Marker in Solid Tumors. Curr. Stem Cell Res. Ther. 2019; 14(5): 375-88.
  34. Liou G.Y. CD133 as a regulator of cancer metastasis through the cancer stem cells. Int. J. Biochem. Cell Biol. 2019; 106: 1-7.
  35. Zhou F., Mu Y.D., Liang J. et al. Expression and prognostic value of tumor stem cell markers ALDH1 and CD133 in colorectal carcinoma. Oncol. Lett. 2014; 7(2): 507-12.
  36. Greco N., Schott T., Mu X. et al. ALDH Activity Correlates with Metastatic Potential in Primary Sarcomas of Bone. J. Cancer Ther. 2014; 5(4): 331-8.
  37. Zambo I., Hermanova M., Zapletalova D. et al. Expression of nestin, CD133 and ABCG2 in relation to the clinical outcome in pediatric sarcomas. Cancer Biomark. 2016; 17(1): 107-16.
  38. Walter D., Satheesh S., Albrecht P. et al. CD133 positive embryonal rhabdomyosarcoma stem-like cell population is enriched in rhabdospheres. PLoS ONE 2011; 6(5): e19506.
  39. He A., Qi W., Huang Y. et al. CD133 expression predicts lung metastasis and poor prognosis in osteosarcoma patients: A clinical and experimental study. Exp. Ther. Med. 2012; 4(3): 435-41.
  40. Zhou Y., Chen D., Qi Y. et al. Evaluation of expression of cancer stem cell markers and fusion gene in synovial sarcoma: Insights into histogenesis and pathogenesis. Oncol. Rep. 2017; 37(6): 3351-60.
  41. Genadry K.C., Pietrobono S., Rota R. et al. Soft Tissue Sarcoma Cancer Stem Cells An Overview. Front. Oncol. 2018; 8: 475.
  42. Heredia-Soto V., Redondo A., Kreilinger J.J.P. et al. 3D culture modelling: An emerging approach for Translational Cancer Research in Sarcomas. Curr. Med. Chem. 2019; 26: 1.
  43. Colella G., Fazioli F., Gallo M. et al. Sarcoma Spheroids and Organoids-Promising Tools in the Era of Personalized Medicine. Int. J. Mol. Sci. 2018; 19(2): 615.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies