Genetic analysis of patients with hypertrophic cardiomyopathy



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Hypertrophic cardiomyopathy is one of the most common cardiovascular pathologies. In most cases, the disease is caused by mutations in genes encoding for sarcomeric proteins. However, high genetic heterogeneity of hypertrophic cardiomyopathy makes it difficult to interpret results of patients' genetic studies. The aim of this study is to check if hypertrophic cardiomyopathy in 15 patients suffering from the disease is due to genetic causes. In the course of genetic analysis, a known pathogenic mutation p.Gln1233Ter in MYBPC3 causing hypertrophic cardiomyopathy was found only in one patient. In six patients, mutations with uncertain clinical significance were identified in hypertrophic cardiomyopathy-associated genes LDB3, MYBPC3, MyH7, MYL2, and MyPn. Three of the mutations, p.Ile730Asn in LDB3, p.Asn515del in MYBPC3, p.Arg955Trp in MYPN were found for the first time in association with hypertrophic cardiomyopathy. In two patients, novel mutations, p.Ser478Trp in MyBpC3 and p.Asn989Ile in MYPN, were identified. Thus, hypertrophic cardiomyopathy may be accounted for by genetic causes in 8 patients more but the role of these mutations in the disease development needs to be clarified.

Full Text

Restricted Access

About the authors

E. V Dementyeva

Institute of Cytology and Genetics, SB of the RAS; E.N. Meshalkin National Medical Research Center

Email: dementyeva@bionet.nsc.ru

Yu. V Vyatkin

Novosibirsk State University

E. I Kretov

E.N. Meshalkin National Medical Research Center

E. A Elisaphenko

Institute of Cytology and Genetics, SB of the RAS; E.N. Meshalkin National Medical Research Center

S. P Medvedev

Institute of Cytology and Genetics, SB of the RAS; E.N. Meshalkin National Medical Research Center

S. M Zakian

Institute of Cytology and Genetics, SB of the RAS; E.N. Meshalkin National Medical Research Center

References

  1. Maron B.J. Hypertrophic cardiomyopathy: a systematic review. JAMA 2002; 287(10): 1308-20.
  2. Elliott P.M., Anastasakis A., Borger M.A. et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the task force for the diagnosis and management of hypertrophic cardiomyopathy of the European Society of Cardiology (ESC). Eur. Heart J. 2014; 35(39): 2733-79.
  3. Houston B.A., Stevens G.R. Hypertrophic cardiomyopathy: a review. Clin. Med. Insights Cardiol. 2015; 8 Suppl 1: 53-65.
  4. Maron B.J., Gardin J.M., Flack J.M. et al. Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA study. Coronary artery risk development in (young) adults. Circulation 1995; 92(4): 785-9.
  5. Marian A.J., Braunwald E. Hypertrophic cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ. Res. 2017; 121(7): 749-70.
  6. Pasipoularides A. Challenges and controversies in hypertrophic cardiomyopathy: clinical, genomic and basic science perspectives. Rev. Esp. Cardiol. (Engl. Ed.) 2018; 71(3): 132-8.
  7. Akhtar M., Elliott P. The genetics of hypertrophic cardiomyopathy. Glob. Cardiol. Sci. Pract. 2018; 2018(3): 36.
  8. Van Driest S.L., Ackerman M.J., Ommen S.R. et al. Prevalence and severity of “benign” mutations in the beta-myosin heavy chain, cardiac troponin T., and alpha-tropomyosin genes in hypertrophic cardiomyopathy. Circulation 2002; 106(24): 3085-90.
  9. Oliva-Sandoval M.J., Ruiz-Espejo F., Monserrat L. et al. Insights into genotype-phenotype correlation in hypertrophic cardiomyopathy. Findings from 18 Spanish families with a single mutation in MYBPC3. Heart 2010; 96(24): 1980-4.
  10. Walsh R., Thomson K.L., Ware J.S. et al. Reassessment of Mendelian gene pathogenicity using 7,855 cardiomyopathy cases and 60,706 reference samples. Genet. Med. 2017; 19(2): 192-203.
  11. Maron B.J., Maron M.S., Semsarian C. Genetics of hypertrophic cardiomyopathy after 20 years: clinical perspectives. J. Am. Coll. Cardiol. 2012; 60(8): 705-15.
  12. Maron B.J., Niimura H., Casey S.A. et al. Development of left ventricular hypertrophy in adults in hypertrophic cardiomyopathy caused by cardiac myosin-binding protein C. gene mutations. J. Am. Coll. Cardiol. 2001; 38(2): 315-21.
  13. Jaaskelainen P., Kuusisto J., Miettinen R. et al. Mutations in the cardiac myosin-binding protein C. gene are the predominant cause of familial hypertrophic cardiomyopathy in eastern Finland. J. Mol. Med. (Berl.) 2002; 80(7): 412-22.
  14. Niimura H., Patton K.K., McKenna W.J. et al. Sarcomere protein gene mutations in hypertrophic cardiomyopathy of the elderly. Circulation 2002; 105(4): 446-51.
  15. Alders M., Jongbloed R., Deelen W. et al. The 2373insG mutation in the MYBPC3 gene is a founder mutation, which accounts for nearly one-fourth of the HCM cases in the Netherlands. Eur. Heart J. 2003; 24(20): 1848-53.
  16. Erdmann J., Daehmlow S., Wischke S. et al. Mutation spectrum in a large cohort of unrelated consecutive patients with hypertrophic cardiomyopathy. Clin. Genet. 2003; 64(4): 339-49.
  17. Morner S., Richard P., Kazzam E. et al. Identification of the genotypes causing hypertrophic cardiomyopathy in northern Sweden. J. Mol. Cell. Cardiol. 2003; 35(7): 841-9.
  18. Richard P., Charron P., Carrier L. et al. Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation 2003; 107(17): 2227-32.
  19. Hayashi T., Arimura T., Itoh-Satoh M. et al. Tcap gene mutations in hypertrophic cardiomyopathy and dilated cardiomyopathy. J. Am. Coll. Cardiol. 2004; 44(11): 2192-201.
  20. Van Driest S.L., Vasile V.C., Ommen S.R. et al. Myosin binding protein C. mutations and compound heterozygosity in hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 2004; 44(9): 1903-10.
  21. Ingles J., Doolan A., Chiu C. et al. Compound and double mutations in patients with hypertrophic cardiomyopathy: implications for genetic testing and counselling. J. Med. Genet. 2005; 42(10): e59.
  22. Girolami F., Olivotto I., Passerini I. et al. A molecular screening strategy based on beta-myosin heavy chain, cardiac myosin binding protein C. and troponin T. genes in Italian patients with hypertrophic cardiomyopathy. J. Cardiovasc. Med. (Hagerstown) 2006; 7(8): 601-7.
  23. Millat G., Chanavat V., Crehalet H. et al. Development of a high resolution melting method for the detection of genetic variations in hypertrophic cardiomyopathy. Clin. Chim. Acta 2010; 411(23-24): 1983-91.
  24. Jordan D.M., Kiezun A., Baxter S.M. et al. Development and validation of a computational method for assessment of missense variants in hypertrophic cardiomyopathy. Am. J. Hum. Genet. 2011; 88(2): 183-92.
  25. Santos S., Marques V., Pires M. et al. High resolution melting: improvements in the genetic diagnosis of hypertrophic cardiomyopathy in a Portuguese cohort. BMC Med. Genet. 2012; 13: 17.
  26. Gomez J., Reguero J.R., Moris C. et al. Mutation analysis of the main hypertrophic cardiomyopathy genes using multiplex amplification and semiconductor next-generation sequencing. Circ. J. 2014; 78(12): 2963-71.
  27. Kapplinger J.D., Landstrom A.P., Bos J.M. et al. Distinguishing hypertrophic cardiomyopathy-associated mutations from background genetic noise. J. Cardiovasc. Transl. Res. 2014; 7(3): 347-61.
  28. Millat G., Chanavat V., Rousson R. Evaluation of a new NGS method based on a custom AmpliSeq library and Ion Torrent PGM sequencing for the fast detection of genetic variations in cardiomyopathies. Clin. Chim. Acta 2014; 433: 266-71.
  29. Cecconi M., Parodi M.I., Formisano F. et al. Targeted next-generation sequencing helps to decipher the genetic and phenotypic heterogeneity of hypertrophic cardiomyopathy. Int. J. Mol. Med. 2016; 38(4): 1111-24.
  30. Erdmann J., Raible J., Maki-Abadi J. et al. Spectrum of clinical phenotypes and gene variants in cardiac myosin-binding protein C. mutation carriers with hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 2001; 38(2): 322-30.
  31. Zeller R., Ivandic B.T., Ehlermann P. et al. Large-scale mutation screening in patients with dilated or hypertrophic cardiomyopathy: a pilot study using DGGE. J. Mol. Med. (Berl.) 2006; 84(8): 682-91.
  32. Ehlermann P., Weichenhan D., Zehelein J. et al. Adverse events in families with hypertrophic or dilated cardiomyopathy and mutations in the MYBPC3 gene. BmC Med. Genet. 2008; 9: 95.
  33. Fokstuen S., Lyle R., Munoz A. et al. A DNA resequencing array for pathogenic mutation detection in hypertrophic cardiomyopathy. Hum. Mutat. 2008; 29(6): 879-85.
  34. Toth T., Nagy V., Faludi R. et al. The Gln1233ter mutation of the myosin binding protein C. gene: causative mutation or innocent polymorphism in patients with hypertrophic cardiomyopathy? Int. J. Cardiol. 2011; 153(2): 216-9.
  35. Stenson P.D., Mort M., Ball E.V. et al. The Human Gene Mutation Database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum. Genet. 2014; 133(1): 1-9.
  36. Waldmuller S., Erdmann J., Binner P. et al. Novel correlations between the genotype and the phenotype of hypertrophic and dilated cardiomyopathy: results from the German Competence Network Heart Failure. Eur. J. Heart Fail. 2011; 13(11): 1185-92.
  37. Meyer T., Ruppert V., Ackermann S. et al. Novel mutations in the sarcomeric protein myopalladin in patients with dilated cardiomyopathy. Eur. J. Hum. Genet. 2013; 21(3): 294-300.
  38. Miszalski-Jamka K., Jefferies J.L., Mazur W. et al. Novel genetic triggers and genotype-phenotype correlations in patients with left ventricular noncompaction. Circ. Cardiovasc. Genet. 2017; 10(4): pii: e001763.
  39. Seidelmann S.B., Smith E., Subrahmanyan L. et al. Application of whole exome sequencing in the clinical diagnosis and management of inherited cardiovascular diseases in adults. Circ. Cardiovasc. Genet. 2017; 10(1): pii: e001573.
  40. Bagnall R.D., Yeates L., Semsarian C. Analysis of the Z-disc genes PDLIM3 and MYPN in patients with hypertrophic cardiomyopathy. Int. J. Cardiol. 2010; 145(3): 601-2.
  41. Purevjav E., Arimura T., Augustin S. et al. Molecular basis for clinical heterogeneity in inherited cardiomyopathies due to myopalladin mutations. Hum. Mol. Genet. 2012; 21(9): 2039-53.
  42. Duboscq-Bidot L., Xu P., Charron P. et al. Mutations in the Z-band protein myopalladin gene and idiopathic dilated cardiomyopathy. Cardiovasc. Res. 2008; 77(1): 118-25.
  43. Berge K.E., Leren T.P. Genetics of hypertrophic cardiomyopathy in Norway. Clin. Genet. 2014; 86(4): 355-60.
  44. Savarese M., Di Fruscio G., Mutarelli M. et al. MotorPlex provides accurate variant detection across large muscle genes both in single myopathic patients and in pools of DNA samples. Acta Neuropathol. Commun. 2014; 2: 100.
  45. Bos J.M., Ackerman M.J. Z-disc genes in hypertrophic cardiomyopathy: stretching the cardiomyopathies? J. Am. Coll. Cardiol. 2010; 55(11): 1136-8.
  46. Maron B.J., Maron M.S., Maron B.A. et al. Moving beyond the sarcomere to explain heterogeneity in hypertrophic cardiomyopathy: JACC review topic of the week. J. Am. Coll. Cardiol. 2019; 73(15): 1978-86.
  47. Bagnall R.D., Ingles J., Dinger M.E. et al. Whole genome sequencing improves outcomes of genetic testing in patients with hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 2018; 72(4): 419-29.
  48. Ingles J., Burns C., Bagnall R.D. et al. Nonfamilial hypertrophic cardiomyopathy: prevalence, natural history, and clinical implications. Circ. Cardiovasc. Genet. 2017; 10(2): pii: e001620.
  49. Ma N., Zhang J.Z., Itzhaki I. et al. Determining the pathogenicity of a genomic variant of uncertain significance using CRISPR/Cas9 and human-induced pluripotent stem cells. Circulation 2018; 138(23): 2666-81.
  50. Lan F., Lee A.S., Liang P. et al. Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells. Cell Stem Cell 2013; 12(1): 101-13.
  51. Han L., Li Y., Tchao J. et al. Study familial hypertrophic cardiomyopathy using patient-specific induced pluripotent stem cells. Cardiovasc. Res. 2014; 104(2): 258-69.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies