The effect of antihistamines drugs on the functional activity of neutrophils



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Allergic inflammation is accompanied by stimulation of neutrophils with an increase in the formation of reactive oxygen species. The antioxidant effectiveness of some antihistamines is known, which reduces the risk of damage to surrounding tissues with the participation of these cells. Objective of the study: to determine the degree of various generations antihistamines influence on the death and enzymatic activity of neutrophils. The effect of the first antihistamines (diphenhydramine, clemastine) and second (lorata-dine, desloratadine) generations and the hormonal drug dexameth-asone on cell viability, the formation of active oxygen metabolites, enzyme activity, the amount of cationic proteins, and cytokine production by neutrophils was studied using the in vitro model. It was found that after exposure to loratadine at a dose of 2.5 |jg / ml, the number of viable cells was comparable (p = 0.001) with that in an intact culture. Found a stimulating effect of second generation antihistamines (loratadine, desloratadine) in low doses on the activity of NADPH-dependent oxide reductase. The form of neutrophil death depended on the type and dose of the drug; apoptosis was predominantly observed after cell contact with loratadine and desloratadine. Against the background of an increase in the activity of ATPase and myeloperoxidase after contact with diphenhydramine and clemastine (2.5 jg / ml), the largest number of neutrophils producing reactive oxygen species was revealed. Under the influence of desloratodine and clemastine, exocytosis of cationic proteins into the extracellular space and the lowest production of cytokines after contact with the latter were established. Thus, exposure to Hl-antihistamines, active both extra- and intracellular (diphenhydramine, loratadine), probably disrupted the metabolism of neutrophils, which led to an increase in their killer potential. Clemastine, acting mainly extracellularly, minimized the toxic effects of extracellular radicals, without affecting the production of intracellular oxidants involved in the regulation of neutrophil functions.

Full Text

Restricted Access

About the authors

N. G Plekhova

Pacific State Medical University Department of Health of Russian Federation

Email: pl_nat@hotmail.com

I. N Dubnyak

Vladivostok Clinical Hospital № 2

E. V Eliseeva

Pacific State Medical University Department of Health of Russian Federation

References

  1. Akdis C.A., Simons F.E.R. Histamine receptors are hot in immuno-pharmacology. Eur. J. Pharmacol. 2006; 533: 69-76.
  2. Soldner C.A., Horn A.H.C., Sticht Н. Binding of histamine to the Н1 receptor-a molecular dynamics study. J. Mol. Model. 2018; 24(12): 346-52.
  3. Church M.K., Church D.S. Pharmacology of antihistamines. Indian. J. Dermatol. 2013; 58(3): 219-24.
  4. Fukui Н., Mizuguchi Н., Nemoto Н. et al. Histamine H, receptor gene expression and drug action of antihistamines. Handb. Exp. Pharmacol. 2017; 241: 161-9.
  5. Randall K.L., Hawkins C.A. Antihistamines and allergy. Aust. Prescr. 2018; 41(2): 41-5.
  6. Canonica G.W., Blaiss M. Antihistaminic, anti-inflammatory, and antiallergic properties of the nonsedating second-generation antihistamine desloratadine: a review of the evidence. World Allergy Organ J. 2011; 4(2): 47-53.
  7. Fingerhut L., Dolz G., de Buhr N. What is the evolutionary fingerprint in neutrophil granulocytes? Int. J. Mol. Sci. 2020; 21(12): 4523-32.
  8. Aratani Y. Myeloperoxidase: Its role for host defense, inflammation, and neutrophil function. Arch. Biochem. Biophys. 2018; 640: 47-52.
  9. Bylund J., Brown K.L., Movitz C. et al. Intracellular generation of superoxide by the phagocyte NADPH oxidase: How, where, and what for? Free Rad. Biol. and Med. 2010; 49(12): 1834-45.
  10. O'Mahony L., Akdis M., Akdis C.A. Regulation of the immune response and inflammation by histamine and histamine receptors. J. Allergy Clin. Immunol. 2011; 128(6): 1153-62.
  11. Просекова Е.В., Турянская А.И., Сабыныч В.А. Оценка системы интерлейкина-17 у детей с аллергической бронхиальной астмой. Тихоокеанский медицинский журнал 2018; 4: 37-40. [Prosekova E.V., Turyanskaya A.I., Sabynych V.A. Assessment of interleukin-17 system in children with allergic bronchial asthma. Pacific Medical Journal 2018; 4: 37-40. (In Russ.)].
  12. Alcaniz L., Vega A., Chacon P. et al. Histamine production by human neutrophils. FASEB J. 2013; 27(7): 2902-10.
  13. Smuda C., Wechsler J.B., Bryce P.J. TLR-induced activation of neutrophils promotes histamine production via a PI3 kinase dependent mechanism. Immunol. Lett. 2011; 141(1): 102-8.
  14. Branco A.C.C.C., Yoshikawa F.S.Y., Pietrobon A.J. et al. Role of Histamine in Modulating the Immune Response and Inflammation. Mediators Inflamm. 2018; 2018: 9524075.
  15. Jutel M., Blaser K., Akdis C.A. The role of histamine in regulation of immune responses. Chem. Immunol. Allergy 2006; 91: 174-87.
  16. Ciz M., Lojek A. Modulation of neutrophil oxidative burst via histamine receptors. Br.J. Pharmacol. 2013; 170(1): 17-22.
  17. Flamand N., Plante H., Picard S. et al. Histamine-induced inhibition of leukotriene biosynthesis in human neutrophils: involvement of the H2 receptor and cAMP. Br.J. Pharmacol. 2004; 141(4): 552-61.
  18. Jancinova V., Drabikova K., Nosal' R. et al. Extra- and intracellular formation of reactive oxygen species by human neutrophils in the presence of pheniramine, chlorpheniramine and brompheniramine. Neuro Endocrinol. Lett. 2006; 27(2): 141-3.
  19. Scadding G. Predicting and establishing the clinical efficacy of a histamine H1- receptor antagonist: desloratadine, the model paradigm. Clin. Drug Invest. 2005; 25: 153-64.
  20. Chen Y., Junger W.G. Measurement of oxidative burst in neutrophils. Methods Mol. Biol. 2012; 844: 115-24.
  21. Плехова Н.Г., Сомова Л.М., Крылова Н.В. и др. Биохимические маркеры цитопатогенности вирусов в макрофагах. Прикладная биохимия и микробиология 2013; 49(1): 72-84.
  22. Walrand S., Valeix S., Rodriguez C. et al. Flow cytometry study of polymorphonuclear neutrophil oxidative burst: a comparison of three fluorescent probes. Clin. Chim. Acta 2003; 331(1-2): 103-10.
  23. Kowaltowski A.J. Strategies to detect mitochondrial oxidants. Redox Biol. 2019; 21: 101065.
  24. Reenstra W.W., Crothers J.Jr., Forte J.G. The conformation of H.,K-ATPase determines the nucleoside triphosphate (NTP) selectivity for active proton transport. Biochemistry 2007; 46(35): 10145-52.
  25. Borregaard N., Sоrensen O.E., Theilgaard-Monch K. Neutrophil granules: a library of innate immunity proteins. Trends Immunol. 2007; 28(8): 340-5.
  26. Деев Р.В., Билялов А.И., Жампеисов Т.М. Современные представления о клеточной гибели. Гены & Клетки 2018; XIII(1): 6-19.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies