Analysis of the features of neurofibromatosis type 1 in the Republic of Bashkortostan



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Neurofibromatosis type 1 (NF1) is an autosomal dominant hereditary tumor syndrome that occurs on average with a frequency of 1: 3000 people. Clinical features of NF1 include cafe-au-lait macules on the skin, multiple cutaneous, subcutaneous, and plexi-form neurofibromas, Lisch nodules, and optic gliomas. The disease is also characterized by damage to the musculoskeletal system, impaired intelligence and behavior. The cause of the disease is germinal mutations in the NF1 gene, which encodes the oncosuppressor neurofibromin. NF1 is characterized by pronounced polymorphism of clinical manifestations, from erased to severe, without geno-phenotypic correlations. Therefore, the role of modifier genes in the pathogenesis of NF1 is assumed. We carried out a clinical-epidemiological and molecular-genetic study of patients with NF1 from the Republic of Bashkortostan (RB). We searched for intragenic mutations by sequencing 57 exons of the NF1 gene, and identified deletions of the entire gene using microsatellite analysis. The prevalence of NF1 in RB is 10 per 100 000. We identified 14 intragenic mutations in the NF1 gene in 20 patients with NF1 and 2 extended deletion of NF1 gene in 3 patients from 2 unrelated families. We did not find a correlation between the type of mutation and the characteristics of the clinical manifestations of the disease. To determine the possible influence of modifier genes on pathogenesis of NF1, we carried out a comparative analysis of the clinical manifestations of NF1 depending on inheritance, ethnicity and association of systemic manifestations. Among the clinical manifestations of NF1 in RB, there was a low frequency of optic nerve gliomas (5,25%) and plexiform neurofibromas (5%). The incidence of brain cysts was 4,25% among patients with NF1. We identified 9 mutations for the first time in the world, 5 out of 14 identified mutations are known (c.2806A>T, c.2991-1G>C, c.3158C>G, c.4537C>T, c.6792C>A). The distribution of mutation types turned out to be random. We identified a protective role of crossbreeding for the development of severe manifestations of NF1. We determined a high incidence of scoliosis, short stature, facial dysmorphism and chest deformity in the inheritance of NF1 from the mother, which suggests the influence of modifier genes on the pathogenesis of NF1.

Full Text

Restricted Access

About the authors

R. N Mustafin

Bashkir State Medical University

R. R Valiev

Bashkir State University

M. A Bermisheva

Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the RAS

E. K Khusnutdinova

Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the RAS

References

  1. Gutmann D.H., Ferner R.E., Listernick R.H. et al. Neurofibromatosis type 1. Nat. Rev. Dis. Primers 2017; 3: 17004.
  2. Kang E., Kim Y., Seo G.H. et al. Phenotype categorization of neurofibromatosis type I. and correlation to NF1 mutation types. J. Hum. Genet. 2020; 65(2): 79-89.
  3. The Human Gene Mutation Database at the Institute of Medical Genetics in Cardiff (HGMD), http://www.hgmd.cf.ac.uk/ac/index.php. Accessed 2021.
  4. Catalogue of Somatic Mutations in Cancer (COSMIC), http://cancer.sanger.ac.uk/cosmic. Accessed 2021.
  5. Pasmant E., Sabbagh A., Spurlock G. et al. NF1 microdeletions in neurofibromatosis type 1: from genotype to phenotype. Hum. Mutat. 2010; 31(6): E1506-18.
  6. Razavi P., Chang M.T., Xu G. et al. The Genomic Landscape of Endocrine-Resistant Advanced Breast Cancer. Cancer Cell 2018; 34(3): 427-38.
  7. Philpott C., Tovell H., Frayling I.M. et al. The NF1 somatic mutational landscape in sporadic human cancers. Hum. Genomics 2017; 11(1): 13.
  8. Ly K.L., Blakeley J.O. The Diagnosis and Management of Neurofibromatosis Type 1. Med. Clin. North. Am. 2019; 103: 1035-54.
  9. Virdis R., Street M.E., Bandello M.A. et al. Growth and pubertal disorders in neurofibromatosis type 1. J. Pediatr. Endocrinol. Metab. 2003; 16: 289-292.
  10. Biotteau M., Dejean S., Lelong S. et al. Sporadic and Familail Variants in NF1: An Explanation of the Wide Variablility in Neurocognitive Phenotype. Front. Neurol. 2020; 11: 368.
  11. Anderson J.L., Gutmann D.H. Neurofibromatosis type 1. Handb. Clin. Neurol. 2015; 132: 75-86.
  12. Costa A.D.A., Gutmann D.H. Brain tumors in neurofibromatosis type 1. Neurooncol. Adv. 2020; 2: i85-7
  13. Glombova M., Petrak B., Lisy J. et al. Brain gliomas, hydrocephalus and idiopathic aqueduct stenosis in children with neurofibromatosis type 1. Brain Dev. 2019; 41(8): 678-90.
  14. Bernardo P., Cinalli G., Santoro C. Epilepsy in NF1: a systematic review of the literature. Childs Nerv. Syst. 2020; 36: 2333-50.
  15. Miraglia E., Fabbrini G., Di Biasi C. et al. Chiari type 1 malformation in Neurofibromatosis type 1: experience of a center and review of the literature. Clin. Ter. 2016; 167: e6-10.
  16. Мустафин Р.Н., Бермишева М.А., Хуснутдинова Э.К. Клиникоэпидемиологическое исследование нейрофиброматоза 1 типа в Республике Башкортостан. Якутский медицинский журнал 2009; 2(26): 23-5
  17. Ars E., Serra E., Garcia J. et al. Mutations affecting mRNA splicing are the most common molecular defects in patients with neurofibromatosis type 1. Human Molecular Genetics 2000; 9(2): 237-47.
  18. Fahsold R., Hoffmeyer S., Mischung C. et al. Minor Lesion Mutational Specrum of the Entire NF1 Gene Does Not Explain Its High Mutability but Points to a Functional Domain Upstream of the GAP-Related Domain. Am.J. Hum. Genet. 2000; 66: 790-818.
  19. Jeong S., Park S., Kim H. The Spectrum of NF1 Mutations in Korean Patients with Neurofibromatosis Type 1. J. Korean Med. Sci. 2006; 21(1): 107-11.
  20. Messiaen L.M., Callens T., Mortier G. et al. Exhaustive Mutation Analysis of NF1 Gene Allows Identification of 95% of Mutations and Reveals a High Frequency of Unusual Splicing Defects. Human Mutation 2000; 15: 541-55.
  21. Welander J., Andreasson A., Juhlin C.C. et al. Rare germline mutations identified by targeted next-generation sequencing of susceptibility genes in pheochromacytoma and paraganglioma. J. Clin. Endocrinol. Metab. 2014; 99(7): E1352-60.
  22. Miller M., Hall J.G. Possible maternal effect on severity of neurofibromatosis. Lancet 1978; 2(8099): 1071-3.
  23. Shannon K.M., Watterson J., Johnson P. et al. Monosomy 7 myeloproliferative disease in children with neurofibromatosis, type 1: epidemiology and molecular analysis. Blood 1992; 79(5): 1311-8.
  24. Bartelt-Kirbach B., Wuepping M., Dodrimont-Lattke M. et al. Expression analysis of genes lying in the NF1 microdeletion interval points to four candidate modifiers for neurofibroma formation. Neurogenetics 2009; 10: 79-85.
  25. Sharafi P., Ayter S. Possible modifier genes in the vatiration of neurofibromatosis type 1 clinical phenotypes. J. Neurogenet. 2018; 32(2): 65-77.
  26. Yu Y., Choi K., Wu J. et al. NF1 patient missense variants predict a role for ATM in modifying neurofibroma initiation. Acta Neuropathol. 2020; 139: 157-74.
  27. Kowalski T.W., Reis L.B., Andreis T.F. et al. Systems Biology Approaches Reveal Potential Phenotype-Modifier Genes in Neurofibromatosis Type 1. Cancers (Basel) 2020; 12: E2416.
  28. Karaosmanoglu B., Kocaefe C.Y., Soylemezoglu F. et al. Heightened CXCR4 and CXCL12 expression in NF1-associated neurofibromas. Childs Nerv. Syst. 2018; 34: 877-82.
  29. Subramanian S., Thayanithy V., West R.B. et al. Genome-wide transcriptome analyses reveal p53 inactivation mediated loss of miR-34a expression in malignant peripheral nerve sheath tumours. The Journal of Pathology 2010; 220: 58-70.
  30. Gong M., Ma J., Li M. et al. MicroRNA-204 critically regulates carcinogenesis in malignant peripheral nerve sheath tumors. Neuro Oncology 2012; 14: 1007-17.
  31. Itani S., Kunisada T., Morimoto Y. et al. MicroRNA-21 correlates with tumorogenesis in malignant peripheral nerve sheath tumor (MPNST) via programmed cell death protein 4 (PDCD4). Journal of Cancer Research and Clinical Oncology 2012; 138: 1501-9.
  32. Weng Y., Chen Y., Chen J. et al. Identification of serum microRNAs in genome-wide serum microRNA expression profiles as novel noninvasive biomarkers for malignant peripheral nerve sheath tumor diagnosis. Medical Oncology 2013; 30: 531.
  33. Abadin S.S., Zoellner N.L., Schaeffer M. et al. Racial/Ethnic Differences in Pediatric Brain Tumor Diagnoses in Patients with Neurofibromatosis Type 1. J. Pediatr. 2015; 167: 613-20.
  34. Johnson K.J., Fisher M.J., Listernick R.L. et al. Parent-of-origin in individuals with familial neurofibromatosis type 1 and optic pathway gliomas. Fam. Cancer 2012; 11: 653-6.
  35. Wolf J.B., Brandvain Y. Gene interations in the evolution of genomic imprinting. Heredity (Edinb.) 2014; 113: 129-37.
  36. Ma Y., Gross A.M., Dombi E. et al. A molecular basis for neurofibroma-associated skeletal manifestations in NF1. Genet. Med. 2020; 22: 1786-93.
  37. Tahaei S.E., Couasnay G., Ma Y. et al. The reduced osteogenic potential of Nf1-deficient osteoprogenitors is EGFR-independent. Bone 2018; 106: 103-11.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies