Non-viral delivery of the BMP2 gene for bone regeneration

Cite item


Gene-activated bone grafts and substitutes are promising tools for the bone defect healing, which are capable to induce prolonged production of growth factors with a therapeutic effect at physiological concentrations. Non-viral methods of delivering plasmid constructs with target genes are the safest for clinical use, but their efficiency is lower in comparison with viral vectors. To solve the problem of plasmid delivery into cells, some systems with a high transfection capacity and ensure sufficient cell viability are being developed. Moreover, there are different approaches to improve the level of expression of target genes and targeted delivery to the bone defect in order to achieve local therapeutic concentrations. This review considers approaches which are aimed to increase the efficiency of bone tissue regeneration methods based on non-viral delivery systems for osteoinduction genes using the example of the bone morphogenetic protein-2 gene.

Full Text

Restricted Access

About the authors

I. A Nedorubova

Research Centre for Medical Genetics; Central Research Institute of Dental and Maxillofacial Surgery


T. B Bukharova

Research Centre for Medical Genetics; Central Research Institute of Dental and Maxillofacial Surgery

A. V Vasilyev

Research Centre for Medical Genetics; Central Research Institute of Dental and Maxillofacial Surgery

D. V Goldshtein

Research Centre for Medical Genetics; Central Research Institute of Dental and Maxillofacial Surgery

A. A Kulakov

Central Research Institute of Dental and Maxillofacial Surgery


  1. Kumar P., Vinitha B., Fathima G. Bone grafts in dentistry. J. Pharm. Bioallied Sci. 2013; 5(5): 125-7.
  2. Деев Р.В., Дробышев А.Ю., Бозо И.Я. Ординарные и активированные остеопластические материалы. Вестник травматологии и ортопедии имени Н.Н. Приорова 2015; 1: 51-69.
  3. Carreira A.C., Zambuzzi W.F., Rossi M.C. et al. Bone morphogenetic proteins: promising molecules for bone healing, bioengineering, and regenerative medicine. Vitam. Horm. 2015; 99: 293-322.
  4. Schmidt-Bleek K., Willie B.M., Schwabe P. et al. BMPs in bone regeneration: Less is more effective, a paradigm-shift. Cytokine Growth Factor Rev. 2016; 27: 141-8.
  5. Salazar V.S., Gamer L.W., Rosen V. BMP signalling in skeletal development, disease and repair. Nat. Rev. Endocrinol. 2016; 12(4): 203-21.
  6. Mi L.Z., Brown C.T., Gao Y. et al. Structure of bone morphogenetic protein 9 procomplex. PNAS USA 2015; 112(12): 3710-5.
  7. Spinella-Jaegle S., Roman-Roman S., Faucheu C. et al. Opposite effects of bone morphogenetic protein-2 and transforming growth factor-beta1 on osteoblast differentiation. Bone 2001; 29(4): 323-30.
  8. Chen G., Deng C., Li Y.P. TGF-p and BMP signaling in osteoblast differentiation and bone formation. Int. J. Biol. Sci. 2012; 8(2): 272-88.
  9. Zhang H., Bradley A. Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development 1996; 122(10): 2977-86.
  10. Кузнецова В.С., Васильев А.В., Бухарова Т.Б. и др. Безопасность и эффективность применения морфогенетических белков кости 2 и 7 в стоматологии. Стоматология 2019; 98(1): 64-9.
  11. Govender S., Csimma C., Genant H.K. et al. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J. Bone Joint Surg. Am. 2002; 84: 2123-34.
  12. Cicciu M., Herford A.S., Cicciu D. et al. Recombinant human bone morphogenetic protein-2 promote and stabilize hard and soft tissue healing for large mandibular new bone reconstruction defects. J. Craniofac. Surg. 2014; 25(3): 860-2
  13. Boyne P.J., Lilly L.C., Marx R.E. et al. De novo bone induction by recombinant human bone morphogenetic Protein-2 (rhbmp-2) in maxillary sinus floor augmentation. J. Oral Maxillofac. Surg. 2005; 63(12): 1693-707.
  14. Axelrad T.W., Steen B., Lowenberg D.W. et al. Heterotopic ossification after the use of commercially available recombinant human bone morphogenetic proteins in four patients. J. of Bone Joint Surg. Br. 2008; 90(12): 1617-22.
  15. Carragee E.J., Hurwitz E.L., Weiner B.K. A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J. 2011; 11(6): 471-91.
  16. Meisel H.J., Schnoring M., Hohaus C. et al. Posterior lumbar interbody fusion using rhBMP-2. Eur. Spine J. 2008; 17(12): 1735-44.
  17. McClellan J.W., Mulconrey D.S., Forbes R.J. et al. Vertebral bone resorption after transforaminal lumbar interbody fusion with bone morphogenetic protein (rhBMP-2). J. Spinal Disord. Tech. 2006; 19(7): 483-6.
  18. Cooper G.S., Kou T.D. Risk of cancer after lumbar fusion surgery with recombinant human bone morphogenic protein-2 (rh-BMP-2). Spine J. 2013; 38: 1862-8.
  19. Kelly M.P., Savage J.W., Bentzen S.M. et al. Cancer Risk from Bone Morphogenetic Protein Exposure in Spinal Arthrodesis. J. Joint Surg. Am. 2014; 96(17): 1417-22.
  20. Carragee E.J., Chu G., Rohatgi R. et al. Cancer risk after use of recombinant bone morphogenetic protein-2 for spinal arthrodesis. J. Bone Joint Surg. Am. 2013; 95: 1537-45.
  21. Skovrlj B., Koehler S.M., Anderson P.A. et al. Association between bmp-2 and carcinogenicity. Spine J. 2015; 40(23): 1862-71.
  22. Woo E.J. Recombinant human bone morphogenetic protein-2: adverse events reported to the manufacturer and user facility device experience database. Spine J. 2012; 12: 894-9.
  23. Kofron M.D., Laurencin C.T. Bone Tissue Engineering by Gene Delivery. Adv. Drug Deliv. Rev. 2006; 58: 555-76.
  24. Park S.Y., Kim K.H., Kim S. et al. BMP-2 Gene Delivery-Based Bone Regeneration in Dentistry. Pharmaceutics 2019; 11(8): 393.
  25. Kolk A., Boskov M., Haidari S. et al. Comparative analysis of bone regeneration behavior using recombinant human BMP-2 versus plasmid DNA of BMP-2. J. Biomed. Mater. Res. A 2019; 107(1): 163-73.
  26. Abbas A.O., Donovan M.D., Salem A.K. Formulating poly(lactide-co-glycolide) particles for plasmid DNA delivery. J. Pharm. Sci. 2008; 97(7): 2448-61.
  27. Raftery R.M., Walsh D.P., Castano I.M. et al. Delivering nucleic-acid based nanomedicines on biomaterial scaffolds for orthopedic tissue repair: challenges, progress and future perspectives. Adv. Mater. 2016; 28(27): 5447-69.
  28. Jin W., Lin D., Nguyen A.H. et al. Transfection of difficult-to-transfect rat primary cortical neurons with magnetic nanoparticles. J. Biomed. Nano-technol. 2018; 14(9): 1654-64.
  29. Figueroa E., Bugga P., Asthana V. et al. A mechanistic investigation exploring the differential transfection efficiencies between the easy-to-transfect SK-BR3 and difficult-to-transfect CT26 cell lines. J. Nanobiotechnology 2017; 15(1): 36.
  30. Смирнихина С.А. Экспрессия генов, трансфицированных в мезенхимные стволовые клетки человека. Гены и клетки 2010; 5(4): 16-23.
  31. de Carvalho T.G., Pellenz F.M., Laureano A. et al. A simple protocol for transfecting human mesenchymal stem cells. Biotechnol. Lett. 2018; 40(3): 617-22.
  32. Wu G.P., He X.C., Hu C.B. et al. Effect of electroporation-mediated transfecting recombinant plasmid pIRES-hBMP-2-hVEGF165 on mandibular distraction osteogenesis. Ann. Plast. Surg. 2012; 69: 316-25.
  33. Aslan H., Zilberman Y., Arbeli V. et al. Nucleofection-based ex vivo nonviral gene delivery to human stem cells as a platform for tissue regeneration. Tissue Eng. 2006; 12: 877-89.
  34. Kawai M., Kataoka Y.H., Sonobe J. et al. Non-surgical model for alveolar bone regeneration by bone morphogenetic protein-2/7 Gene Therapy. J. Periodontol. 2018; 89: 85-92.
  35. Feichtinger G.A., Hofmann A.T., Slezak P. et al. Sonoporation increases therapeutic efficacy of inducible and constitutive BMP2/7 in vivo gene delivery. Hum. Gene Ther. Methods 2014; 25(1): 57-71.
  36. Hamm A., Krott N., Breibach I. et al. Effcient transfection method for primary cells. Tissue Eng. 2002; 8: 235-45.
  37. Зарницын В.Г., Праузниц М.Р., Чизмаджев Ю.А. Физические методы переноса нуклеиновых кислот в ткани и клетки. Биологические Мембраны: Журнал мембранной и клеточной биологии 2004; 21(5): 355-73.
  38. Qadir A., Gao Y., Suryaji P. et al. Non-viral delivery system and targeted bone disease therapy. Int. J. Mol. Sci. 2019; 20(3): 565.
  39. Curtin C.M., Cunniffe G.M., Lyons F.G. et al. Innovative collagen nano-hydroxyapatite scaffolds offer a highly efficient non-viral gene delivery platform for stem cell-mediated bone formation. Adv. Mater. 2012; 24(6): 749-54.
  40. Yang X., Walboomers X.F., Van den Dolder J. et al. Non-viral bone morphogenetic protein 2 transfection of rat dental pulp stem cells using calcium phosphate nanoparticles as carriers. Tissue Eng. Part A 2008; 14(1): 71-81.
  41. Conner S.D., Schmid S.L. Regulated portals of entry into the cell. Nature 2003; 422: 37-44.
  42. Михеев А.А., Шмендель Е.В., Жестовская Е.С. и др. Катионные липосомы как средства доставки нуклеиновых кислот. Тонкие химические технологии 2020; 15(1): 7-27.
  43. Slivac I., Guay D., Mangion M. et al. Non-viral nucleic acid delivery methods. Expert Opin. Biol. Th. 2016; 17(1): 105-18.
  44. Paidikondala M., Kadekar S., Varghese O. Innovative strategy for 3D transfection of primary human stem cells with BMP-2 expressing plasmid DNA: A clinically translatable strategy for ex vivo gene therapy. Int. J. Mol. Sci. 2018; 20(1): 56.
  45. Wegman F., Bijenhof A., Schuijff L. et al. Osteogenic differentiation as a result of BMP-2 plasmid DNA based gene therapy in vitro and in vivo. Eur. Cells Mater. 2011; 21: 230-42.
  46. Joenoes H., Yuniastuti M., Bachtiar E.W. et al. Construction of recombinant plasmid pcDNA3.1/BMP-2 and its involvement in differentiation of human dental pulp-derived cells into an odontoblastic lineage. MJHR 2009; 13(1): 5-8.
  47. Tang Y., Tang W., Lin Y. et al. Combination of bone tissue engineering and BMP-2 gene transfection promotes bone healing in osteoporotic rats. Cell Biol. Int. 2008; 32: 1150-7.
  48. Park J., Ries J., Gelse K. et al. Bone regeneration in critical size defects by cell-mediated BMP-2 gene transfer: a comparison of adenoviral vectors and liposomes. Gene Ther. 2003; 10: 1089-98.
  49. Yang S., May S. Release of cationic polymer-DNA complexes from the endosome: A theoretical investigation of the proton sponge hypothesis. J. Chem. Phys. 2008; 129(18): 185105.
  50. Osada K. Development of functional polyplex micelles for systemic gene therapy. Polym. J. 2014; 46(8): 469-75.
  51. Scheller E.L., Krebsbach P.H. Gene therapy: design and prospects for craniofacial regeneration. J. Dent. Res. 2009; 88(7): 585-96.
  52. Dang J., Leong K. Natural polymers for gene delivery and tissue engineering. Adv. Drug Deliv. Rev. 2006; 58(4): 487-99.
  53. Kichler A., Leborgne C., Coeytaux E. et al. Polyethylenimine-mediated gene delivery: a mechanistic study. J. Gene Med. 2001; 3: 135-44.
  54. Wang Y., You C., Wei R. et al. Modification of human umbilical cord blood stem cells using polyethylenimine combined with modified TAT peptide to enhance BMP-2 production. Biomed Res. Int. 2017: 1-9.
  55. Lee J.E., Yin Y., Lim S.Y. et al. Enhanced transfection of human mesenchymal stem cells using a hyaluronic acid/calcium phosphate hybrid gene delivery system. Polymers 2019; 11(5): 798.
  56. D’Mello S., Atluri K., Geary S.M. et al. Bone regeneration using gene-activated matrices. AAPS J. 2016; 19(1): 43-53.
  57. Pandey A.P., Sawant K.K. Polyethylenimine: A versatile, multifunctional non-viral vector for nucleic acid delivery. Mater. Sci. Eng. C. 2016; 68: 904-18.
  58. Lee Y.H., Wu H.C., Yeh C.W. et al. Enzyme-crosslinked gene-activated matrix for the induction of mesenchymal stem cells in osteochondral tissue regeneration. Acta Biomater. 2017; 63: 210-26.
  59. Atluri K., Seabold D., Hong L. et al. Nanoplex-mediated codelivery of fibroblast growth factor and bone morphogenetic protein genes promotes osteogenesis in human adipocyte-derived mesenchymal stem cells. Mol. Pharm. 2015; 12(8): 3032-42.
  60. Qiao C., Zhang K., Jin H. et al. Using poly(lactic-co-glycolic acid) microspheres to encapsulate plasmid of bone morphogenetic protein 2/ polyethylenimine nanoparticles to promote bone formation in vitro and in vivo. Int. J. Nanomed. 2013; 8: 2985-95.
  61. Yue J., Wu J., Liu D. et al. BMP2 gene delivery to bone mesenchymal stem cell by chitosan-g-PEI nonviral vector. Nanoscale Res. Lett. 201 5; 10(1): 203.
  62. Xu X., Qiu S., Zhang Y. et al. PELA microspheres with encapsulated arginine-chitosan/pBMP-2 nanoparticles induce pBMP-2 controlled-release, transfected osteoblastic progenitor cells, and promoted osteogenic differentiation. Artif. Cells Nanomed. B. 2016; 45(2): 330-9.
  63. Raftery R.M., Mencia-Castano I., Sperger S. et al. Delivery of the improved BMP-2-Advanced plasmid DNA within a gene-activated scaffold accelerates mesenchymal stem cell osteogenesis and critical size defect repair. J. Control. Release 2018; 283: 20-31.
  64. Keeney M., Chung M.T., Zielins E.R. et al. Scaffold-mediated BMP-2 minicircle DNA delivery accelerated bone repair in a mouse critical-size calvarial defect model. J. Biomed. Mater. Res. A 2016; 104: 2099-107.
  65. Chen W., Li W., Xu K. et al. Functionalizing titanium surface with PAMAM dendrimer and human BMP2 gene via layer-by-layer assembly for enhanced osteogenesis. J. Biomed. Mater. Res. A 2017; 106(3): 706-17.
  66. Santos J.L., Oramas E., Pego A.P. et al. Osteogenic differentiation of mesenchymal stem cells using PAMAM dendrimers as gene delivery vectors. J. Control. Release 2009; 134(2): 141-8.
  67. Nedorubova I.A., Bukharova T.B., Zagoskin Y.D. et al. Development of osteoplastic material impregnated with plasmid encoding bone morphogenetic protein-2. Biotekhnologiya 2020; 36(4): 59-64.
  68. Loozen L.D., Kruyt M.C., Kragten A.H.M. et al. BMP-2 gene delivery in cell-loaded and cell-free constructs for bone regeneration. PLoS One 2019; 14(7): e0220028.
  69. Qin J.Y., Zhang L., Clift K.L. et al. Systematic comparison of constitutive promoters and the doxycycline-inducible promoter. PLoS One 2010; 5(5): e10611.
  70. Hacobian A.R.A., Posa-Markaryan K., Sperger S. et al. Improved osteogenic vector for non-viral gene therapy. Eur. Cells Mater. 2016; 31: 191-204.
  71. Kuttappan S., Anitha A., Minsha M.G. et al. BMP2 expressing genetically engineered mesenchymal stem cells on composite fibrous scaffolds for enhanced bone regeneration in segmental defects. Mater. Sci. Eng. 2018; 85: 239-48.
  72. Zhang W., Tsurushima H., Oyane A. et al. BMP-2 gene-fibronectin-apatite composite layer enhances bone formation. J. Biomed. Sci. 2011; 18(1): 62.
  73. Endo M., Kuroda S., Kondo H. et al. bone regeneration by modified gene-activated matrix: effectiveness in segmental tibial defects in rats. Tissue Eng. 2006; 12(3): 489-97.
  74. Li H., Ji Q., Chen X. et al. Accelerated bony defect healing based on chitosan thermosensitive hydrogel scaffolds embedded with chitosan nanoparticles for the delivery of BMP2 plasmid DNA. J. Biomed. Mater. Res. A 2016; 105(1): 265-73.
  75. Kolk A., Tischer T., Koch C. et al. A novel nonviral gene delivery tool of BMP-2 for the reconstitution of critical-size bone defects in rats. J. Biomed. Mater. Res. A 2016; 104: 2441-55.
  76. Kaipel M., Schutzenberger S., Hofmann A.T. et al. Evaluation of fibrin-based gene-activated matrices for BMP2/7 plasmid codelivery in a rat nonunion model. Int. Orthop. 2014; 38(12): 2607-13.
  77. Park J., Lutz R., Felszeghy E. et al. The effect on bone regeneration of a liposomal vector to deliver BMP-2 gene to bone grafts in peri-implant bone defects. Biomaterials 2007; 28(17): 2772-82.
  78. Khorsand B., Nicholson N., Do A.V. et al. Regeneration of bone using nanoplex delivery of FGF-2 and BMP-2 genes in diaphyseal long bone radial defects in a diabetic rabbit model. J. Control. Release 2017; 248: 53-9.
  79. Logovskaya L.V., Bukharova T.B., Volkov A.V. et al. Induction of osteogenic differentiation of multipotent mesenchymal stromal cells from human adipose tissue. Bull. Exp. Biol. Med. 2013; 155(1): 145-50.
  80. Perez J.R., Kouroupis D., Li D.J. et al. Tissue engineering and cell-based therapies for fractures and bone defects. Front. Bioeng. Biotechnol. 2018; 6: 105.
  81. Krebs M.D., Salter E., Chen E. et al. Calcium phosphate-DNA nanoparticle gene delivery from alginate hydrogels inducesin vivoosteogen-esis. J. Biomed. Mater. Res. A 2010; 92(3): 1131-8.
  82. Lu K., Zeng D., Zhang Y. et al. BMP-2 gene modified canine bMSCs promote ectopic bone formation mediated by a nonviral PEI derivative. Ann. Biomed. Eng. 2011; 39(6): 1829-39.
  83. Rose L.C., Kucharski C., Uludag H. Protein expression following nonviral delivery of plasmid DNA coding for basic FGF and BMP-2 in a rat ectopic model. Biomaterials 2012; 33(11): 3363-74.
  84. Vural A.C., Odabas S., Korkusuz P. et al. Cranial bone regeneration via BMP-2 encoding mesenchymal stem cells. Artif. Cells Nanomed. Biotechnol. 2016; 45(3): 544-50.
  85. Gonzalez-Fernandez T., Rathan S., Hobbs C. et al. Pore-forming bioinks to enable spatio-temporally defined gene delivery in bioprinted tissues. J. Control. Release 2019; 301: 13-27.
  86. Steinert A.F., Noth U., Tuan R.S. Concepts in gene therapy for cartilage repair. Injury 2008; 39 Suppl 1: 97-113.
  87. Бозо И.Я., Рожков С.И., Комлев В.С. и др. Сравнительная оценка биологической активности ген-активированных остеопластических материалов из октакальциевого фосфата и плазмидных ДНК, несущих гены VEGF и SDF: часть 2 - in vivo. Гены и клетки 2017; 12(4): 39-46.

Copyright (c) 2020 PJSC Human Stem Cells Institute

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС 77 - 57156 от 11.03.2014.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies