Participation of ABC-transporters in lipid metabolism and pathogenesis of atherosclerosis



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Atherosclerosis is one of the key causes of morbidity and mortality worldwide. It is known that a leading role in the development and progression of atherosclerosis is played by a violation of lipid metabolism. ABC transporters provide lipid cell homeostasis, performing a number of transport functions - moving lipids inside the cell, in the plasma membrane, and also removing lipids from the cell. In a large group of ABC transporters, about 20 take part in lipid homeostasis, playing, among other things, an important role in the pathogenesis of atherosclerosis. It was shown that cholesterol is not only a substrate for a number of ABC transporters, but also able to modulate their activity. Regulation of activity is carried out due to specific lipid-protein interactions.

Full Text

Restricted Access

About the authors

S. N Kotlyarov

I.P. Pavlov Ryazan State Medical University

A. A Kotlyarova

I.P. Pavlov Ryazan State Medical University

References

  1. Blattner F.R., Plunkett G., Bloch C.A. et al. The complete genome sequence of Escherichia coli K-12. Science 1997; 277(5331): 1453-62.
  2. Dean M., Hamon Y., Chimini G. The human ATP-binding cassette (ABC) transporter superfamily. J. Lipid Res. 2001; 42(7): 1007-17.
  3. Phillips M.C. Is ABCA1 a lipid transfer protein? J. Lipid Res. 2018; 59(5): 749-63.
  4. Tarling E.J., de Aguiar Vallim T.Q., Edwards P.A. Role of ABC transporters in lipid transport and human disease. Trends Endocrinol. Metab. 2013; 24(7): 342-50.
  5. Neumann J., Rose-Sperling D., Hellmichet U.A. Diverse relations between ABC transporters and lipids: An overview. Biochimica et Biophysica Acta 2017; 1859(4): 605-18.
  6. Barreto-Ojeda E., Corradi V., Gu R.X. et al. Coarse-grained molecular dynamics simulations reveal lipid access pathways in P-glycoprotein. J. Gen. Physiol. 2018; 150(3): 417-29.
  7. Dawson R.J.P., Locher K.P. Structure of a bacterial multidrug ABC transporter. Nature 2006; 443(7108): 180-5.
  8. Song Y., Kenworthy A.K., Sanders C.R. Cholesterol as a co-solvent and a ligand for membrane proteins. Protein Sci. 2014; 23(1): 1-22.
  9. Fantini J., Barrantes F.J. How cholesterol interacts with membrane proteins: an exploration of cholesterol-binding sites including CRAC, CARC, and tilted domains. Front. Physiol. 2013; 4: 31.
  10. Biemans-Oldehinkel E., Doeven M.K., Poolman B. ABC transporter architecture and regulatory roles of accessory domains. FEBS Lett. 2006; 580(4): 1023-35.
  11. Luciani M.F., Denizot F., Savary S. et al. Cloning of two novel ABC transporters mapping on human chromosome 9. Genomics 1994; 21(1): 150-9.
  12. Qian H., Zhao X., Cao P. et al. Structure of the Human Lipid Exporter ABCA1. Cell 2017; 169(7): 1228-39.
  13. Landry Y.D., Denis M., Nandi S. et al. ATP-binding cassette transporter A1 expression disrupts raft membrane microdomains through its ATPase-related functions. J. Biol. Chem. 2006; 281: 36091-101.
  14. Nagao K., Kimura Y., Mastuo M. et al. Lipid outward translocation by ABC proteins. FEBS Lett. 2010; 584: 2717-23.
  15. Smith J.D., Le Goff W., Settle M. et al. ABCA1 mediates concurrent cholesterol and phospholipid efflux to apolipoprotein A-I.J. Lipid Res. 2004; 45(4): 635-44.
  16. Westerterp M., Bochem A.E., Yvan-Charvet L. et al. Tall ATP-Binding Cassette Transporters, Atherosclerosis and Inflammation. Circulation Research 2014; 114: 157-70.
  17. Demina E.P., Miroshnikova V.V., Schwarzman A.L. Role of the ABC transporters A1 and G1, key reverse cholesterol transport proteins, in atherosclerosis. Molecular Biology 2016; 50(2): 193-9.
  18. Ruyss J.M., Lonez C. Role of lipid microdomains in TLR-mediated signaling. Biochim. Biophys. Acta 2015; 9: 1860-7.
  19. Padron D., Wang Y.J., Yamamoto M. et al. Phosphatidylinositol phosphate 5-kinase Ibeta recruits AP-2 to the plasma membrane and regulates rates of constitutive endocytosis. J. Cell Biol. 2003; 162: 693-701.
  20. Gulshan K., Brubaker G., Conger H. et al. PI (4,5) P2 Is Translocated by ABCA1 to the Cell Surface Where It Mediates Apolipoprotein A1 Binding and Nascent HDL Assembly. Circ. Res. 2016; 119(7): 827-38.
  21. Kagan J.C., Medzhitov R. Phosphoinositide-mediated adaptor recruitment controls toll-like receptor signaling. Cell 2006; 125: 943-55.
  22. Fitzgerald K.A., Chen Z.J. Sorting out Toll signals. Cell 2006; 125: 834-6.
  23. Semaan N., Alsaleh G., Gottenberg J.E. et al. Etk/BMX, a Btk Family Tyrosine Kinase, and Mal Contribute to the Cross-Talk between MyD88 and fAk Pathways. J. Immunol. 2008; 180(5): 3485-91.
  24. Wang N., Lan D., Gerbod-Giannone M. et al. ATP-binding cassette transporter A7 (ABCA7) binds apolipoprotein A-I and mediates cellular phospholipid but not cholesterol efflux. J. Biol. Chem. 2003; 278(44): 42906-12.
  25. Ye D., Meurs I., Ohigashi M. Macrophage ABCA5 deficiency influences cellular cholesterol efflux and increases susceptibility to atherosclerosis in female LDLr knockout mice. Biochemical and Biophysical Research Communications 2010; 395(3): 387-94.
  26. Sharom F.J. The P-glycoprotein efflux pump: how does it transport drugs? J. Membr. Biol. 1997; 160(3): 161-75.
  27. Sharom F.J. Complex Interplay between the P-Glycoprotein Multidrug Efflux Pump and the Membrane: Its Role in Modulating Protein Function. Front. Oncol. 2014; 4: 41.
  28. Linton K.J. Lipid flopping in the liver. Biochem. Soc. Trans. 2015; 43(5): 1003-10.
  29. Zhao Y., Ishigami M., Nagao K. et al. ABCB4 exports phosphatidylcholine in a sphingomyelin-dependent manner. J. Lipid Res. 2015; 56(3): 644-52.
  30. Riordan J.R., Deuchars K., Kartner N. et al. Amplification of P-glycoprotein genes in multidrug-resistant mammalian cell lines. Nature 1985; 316(6031): 817-9.
  31. Cario E. P-glycoprotein multidrug transporter in inflammatory bowel diseases: More questions than answers. World J. Gastroenterol. 2017; 23(9): 1513-20.
  32. Juliano R.L., Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. Acta 1976; 455(1): 152-62.
  33. Ambudkar S.V., Kimchi-Sarfaty C., Sauna Z.E. et al. P-glycoprotein: from genomics to mechanism. Oncogene 2003; 22(47): 7468-85.
  34. Черных И.В., Щулькин А.В., Мыльников П.Ю. и др. Функциональная активность гликопротеина-P в гематоэнцефалическом барьере на фоне экспериментального паркинсонического синдрома. Российский медикобиологический вестник имени академика И.П. Павлова 2019; 27(2): 150-9.
  35. Черных И.В., Щулькин А.В., Гацанога М.В. и др. Функциональная активность гликопротеина-P на фоне ишемии головного мозга. Наука молодых (Eruditio Juvenium) 2019; 7(1): 46-52
  36. Chufan E.E., Sim H.M., Ambudkar S.V. Molecular basis of the polyspecificity of P-glycoprotein (ABCB1): recent biochemical and structural studies. Adv. Cancer Res. 2015; 125: 71-96.
  37. Subramanian N., Condic-Jurkic K., O’Mara M.L. Structural and dynamic perspectives on the promiscuous transport activity of P-glycoprotein. Neurochem. Int. 2016; 98: 146-52.
  38. Higgins C.F., Gottesman M.M. Is the multidrug transporter a flip-pase? Trends Biochem. Sci. 1992; 17(1): 18-21.
  39. Bosch I., Dunussi-Joannopoulos K., Wu R.L. Phosphatidylcholine and phosphatidylethanolamine behave as substrates of the human MDR1 P-glycoprotein. Biochemistry 1997; 36: 5685-94.
  40. Sharom F.J. The P-glycoprotein multidrug transporter. Essays Biochem. 2011; 50(1): 161-78.
  41. Hodges L.M., Markova S.M., Chinn L.W. et al. Very important pharmacogene summary: ABCB1 (MDR1, P-glycoprotein) Pharmacogenet. Genomics 2011; 21(3): 152-61.
  42. Aller S.G., Yu J., Ward A. et al. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 2009; 323(5922): 1718-22.
  43. Loo T.W., Clarke D.M. Reconstitution of drug-stimulated ATPase activity following co-expression of each half of human P-glycoprotein as separate polypeptides. J. Biol. Chem. 1994; 269: 7750-5.
  44. Chen Z., Shi T., Zhang L. et al. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: A review of the past decade. Cancer Lett. 2016; 370(1): 153-64.
  45. Li J., Jaimes K.F., Aller S.G. Refined structures of mouse P-glycoprotein. Protein Sci. 2014; 23: 34-46.
  46. Leong M.K., Chen H.B., Shih Y.H. Prediction of promiscuous p-glycoprotein inhibition using a novel machine learning scheme. PLoS One 2012; 7: e33829.
  47. Marcoux J., Wang S.C., Politis A. et al. Mass spectrometry reveals synergistic effects of nucleotides, lipids, and drugs binding to a multidrug resistance efflux pump. PNAS USA 2013; 110(24): 9704-9.
  48. Ferreira R.J., Ferreira M.J.U., Dos Santos D.J.V.A. Do drugs have access to the P-glycoprotein drug-binding pocket through gates? J. Chem. Theory Comput. 2015; 11(10): 4525-9.
  49. van Helvoort A., Smith A.J., Sprong H. et al. MDR1 P-glycoprotein is a lipid translocase of broad specificity, while MDR3 P-glycoprotein specifically translocates phosphatidylcholine. Cell 1996; 87(3): 507-17.
  50. Kimura Y., Kioka N., Kato H. et al. Modulation of drug-stimulated ATPase activity of human MDR1/P-glycoprotein by cholesterol. Biochem. J. 2007; 401(2): 597-605.
  51. Garrigues A., Escargueil A.E., Orlowski S. The multidrug transporter, P-glycoprotein, actively mediates cholesterol redistribution in the cell membrane. PNAS USA 2002; 99(16): 10347-52.
  52. Clay A.T., Lu P., Sharom F.J. Interaction of the P-glycoprotein multidrug transporter with sterols. Biochemistry 2015; 54(43): 6586-97.
  53. Maki N., Hafkemeyer P., Dey S. Allosteric modulation of human P-glycoprotein: inhibition of transport by preventing substrate translocation and dissociation. J. Biol. Chem. 2003; 278: 18132-9.
  54. Dey S., Ramachandra M., Pastan I. et al. Evidence for two nonidentical drug-interaction sites in the human P-glycoprotein. PNAS USA 1997; 94(20): 10594-9.
  55. Loo T.W., Bartlett M.C., Clarke D.M. Simultaneous binding of two different drugs in the binding pocket of the human multidrug resistance P-glycoprotein. J. Biol. Chem. 2003; 278(41): 39706-10.
  56. Li H., Papadopoulos V. Peripheral-type benzodiazepine receptor function in cholesterol transport. Identification of a putative cholesterol recognition/interaction amino acid sequence and consensus pattern. Endocrinology 1998; 139: 4991-7.
  57. Baier C.J., Fantini J., Barrantes F.J. Disclosure of cholesterol recognition motifs in transmembrane domains of the human nicoticin acetylcholine receptor. Sci. Reports 2011; 1: 69.
  58. Fantini J., Barrantes F.J. Sphingolipid/cholesterol regulation of neurotransmitter receptor conformation and function. Biochim. Biophys. Acta 2009; 1788(11): 2345-61.
  59. Langmann T., Mauerer R., Schmitz Human G. ATP-binding cassette transporter TaqMan low-density array: analysis of macrophage differentiation and foam cell formation. Clin. Chem. 2006; 52: 310-3.
  60. Pennings M., Meurs I., Ye D. et al. Regulation of cholesterol homeostasis in macrophages and consequences for atherosclerotic lesion development. FEBS Letters 2006; 580: 5588-96.
  61. Batetta B., Mulas M.F., Petruzzo P. et al. Opposite pattern of MDR1 and caveolin-1 gene expression in human atherosclerotic lesions and proliferating human smooth muscle cells. Cell. Mol. Life Sci. 2001; 58(8): 1113-20.
  62. Klucken J., Buchler C., Orso E. et al. ABCG1 (ABC8), the human homolog of the Drosophila white gene, is a regulator of macrophage cholesterol and phospholipid transport. PNAS USA 2000; 2: 817-22.
  63. Pennings M., Hildebrand R.B., Ye D. et al. Bone marrow-derived multidrug resistance protein ABCB4 protects against atherosclerotic lesion development in LDL receptor knockout mice. Cardiovascular Research 2017; 76(1): 175-83.
  64. Voshol P.J., Havinga R., Wolters H. et al. Reduced plasma cholesterol and increased fecal sterol loss in multidrug resistance gene 2 P-glycoprotein-deficient mice. Gastroenterology 1998; 114: 1024-34.
  65. Langheim S., Yu L., von Bergmann K. et al. ABCG5 and ABCG8 require MDR2 for secretion of cholesterol into bile. J. Lipid Res. 2005; 46: 1732-8.
  66. Daleke D.L. Regulation of transbilayer plasma membrane phospholipid asymmetry. J. Lipid Res. 2003; 44: 233-42.
  67. Murphy A.J., Sarrazy V., Wang N. et al. Deficiency of ATP-binding cassette transporter B6 in megakaryocyte progenitors accelerates atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol. 2014; 34: 751-8.
  68. Schumacher T., Benndorf R.A. ABC Transport Proteins in Cardiovascular Disease-A Brief Summary. Molecules 2017; 22(4): 589.
  69. Huo Y., Schober A., Forlow S.B. et al. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat. Med. 2003; 9(1): 61-7.
  70. Wang N., Tall A.R. Cholesterol in platelet biogenesis and activation. Blood 2016; 127(16): 1949-53.
  71. Koenen R.R., von Hundelshausen P., Nesmelova I.V. et al. Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice. Nat. Med. 2009; 15(1): 97-103.
  72. Sreeramkumar V., Adrover J.M., Ballesteros I. et al. Neutrophils scan for activated platelets to initiate inflammation. Science 2014; 346(6214): 1234-8.
  73. Schrottmaier W.C., Kral J.B., Badrnya S. et al. Aspirin and P2Y12 Inhibitors in platelet-mediated activation of neutrophils and monocytes. Thromb. Haemost. 2015; 114(3): 478-9.
  74. Machlus K.R., Italiano J.E., Jr. The incredible journey: From megakaryocyte development to platelet formation. J. Cell Biol. 2013; 201(6): 785-96.
  75. Soehnlein O. The ABC of Thrombopoiesis. Arteriosclerosis, Thrombosis, and Vascular Biology 2014; 34: 700-1.
  76. Chavan H., Oruganti M., Krishnamurthy P. The ATP-binding cassette transporter ABCB6 is induced by arsenic and protects against arsenic cytotoxicity. Toxicol. Sci. 2011; 120(2): 519-28.
  77. Boswell-Casteel R.C., Fukuda Y., Schuetz J.D. ABCB6, an ABC Transporter Impacting Drug Response and Disease. AAPS J. 2017; 20(1): 8.
  78. Gerloff T., Stieger B., Hagenbuch B. et al. The sister of P-glycoprotein represents the canalicular bile salt export pump of mammalian liver. J. Biol. Chem. 1998; 273(16): 10046-50.
  79. Akita H., Suzuki H., Ito K. et al. Characterization of bile acid transport mediated by multidrug resistance associated protein 2 and bile salt export pump. Biochim. Biophys. Acta 2001; 1511: 7-16.
  80. Hirohashi T., Suzuki H., Takikawa H. et al. ATP-dependent transport of bile salts by rat multidrug resistance-associated protein 3 (Mrp3). J. Biol. Chem. 2000; 275(4): 2905-10.
  81. Cole S.P., Deeley R.G. Transport of glutathione and glutathione conjugates by MRP1. Trends Pharmacol. Sci. 2006; 27(8): 438-46.
  82. Raggers R.J., van Helvoort A., Evers R.et al. The human multidrug resistance protein MRP1 translocates sphingolipid analogs across the plasma membrane. J. Cell Sci. 1999; 112(3): 415-22.
  83. Marbeuf-Gueye C., Stierle V., Sudwan P. et al. Perturbation of membrane microdomains in GLC4 multidrug-resistant lung cancer cells: modification of ABCC1 (MRP1) localization and functionality. FEBS J. 2007; 274(6): 1470-80.
  84. Kok J.W., Klappe K., Hummel I. The Role of the Actin Cytoskeleton and Lipid Rafts in the Localization and Function of the ABCC1 Transporter. Advances in Biology 2014; 3: 1-11.
  85. Meszaros P., Klappe K., Hummel I. et al. Function of MRP1/ ABCC1 is not dependent on cholesterol or cholesterol-stabilized lipid rafts. Biochem. J. 2011; 437(3): 483-91.
  86. Mueller C.F.H., Widder J.D., McNally J.S. et al. The Role of the Multidrug Resistance Protein-1 in Modulation of Endothelial Cell Oxidative Stress. Circ. Res. 2005; 97(7): 637-44.
  87. Widder J.D., Guzik T.J., Mueller C.F.H. et al. Role of the multidrug resistance protein-1 in hypertension and vascular dysfunction caused by angiotensin II. Arterioscler. Thromb. Vasc. Biol. 2007; 27(4): 762-8.
  88. Hirrlinger J., Konig J., Keppler D. et al. The multidrug resistance protein MRP1 mediates the release of glutathione disulfide from rat astrocytes during oxidative stress. J. Neurochem. 2001; 76: 627-36.
  89. Mueller C.F.H., Widder J.D., McNally J.S. et al. The role of the multidrug resistance protein-1 in modulation of endothelial cell oxidative stress. Circ. Res. 2005; 97: 637-44.
  90. Mueller C.F.H., Wassmann K., Widder J.D. et al. Multidrug Resistance Protein-1 Affects Oxidative Stress, Endothelial Dysfunction, and Atherogenesis via Leukotriene C4 Export. Circulation 2008; 117: 2912-8.
  91. Sassi Y., Lipskaia L., Vandecasteele G. et al. Multidrug resistance-associated protein 4 regulates cAMP-dependent signaling pathways and controls human and rat SMC proliferation. J. Clin. Investig. 2008; 118: 2747-57.
  92. Maher J.M., Dieter M.Z., Aleksunes L.M. et al. Oxidative and electro-philic stress induces multidrug resistance-associated protein transporters via the nuclear factor-E2-related factor-2 transcriptional pathway. Hepatology 2007; 46: 1597-610.
  93. Tardif J.C. Clinical results with AGI-1067: a novel antioxidant vascular protectant. Am.J. Cardiol. 2003; 91: 41A-9A.
  94. Sellers Z.M., Naren A.P., Xiang Y. et al. MRP4 and CFTR in the regulation of cAMP and β-adrenergic contraction in cardiac myocytes. Eur. J. Pharmacol. 2012; 681: 80-7.
  95. Chantemargue B., Meo F.D., Berka K. Structural patterns of the human ABCC4/MRP4 exporter in lipid bilayers rationalize clinically observed polymorphisms. Pharmacological Research 2018; 133: 318-27.
  96. Mueller C.F.H., Wassmann K., Widder J.D. et al. Multidrug resistance protein-1 affects oxidative stress, endothelial dysfunction, and atherogenesis via leukotriene C4 export. Circulation 2008; 117: 2912-8.
  97. Kobayashi A., Takanezawa Y., Hirata T. et al. Efflux of sphingomyelin, cholesterol, and phosphatidylcholine by ABCG1. J. Lipid Res. 2006; 47(8): 1791-802.
  98. Cserepes J., Szentpetery Z., Seres L. et al. Functional expression and characterization of the human ABCG1 and ABCG4 proteins: indications for heterodimerization. Biochem. Biophys. Res. Commun. 2004; 320(3): 860-7.
  99. Sano O., Ito S., Kato R. et al. ABCA1, ABCG1, and ABCG4 Are Distributed to Distinct Membrane Meso-Domains and Disturb Detergent-Resistant Domains on the Plasma Membrane. PLоS ONE 2014; 9(10): e109886.
  100. Wang N., Lan D., Chen W. et al. ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins. PNAS USA 2004; 101(26): 9774-9.
  101. Terasaka N., Wang N., Yvan-Charvet L. et al. High-density lipoprotein protects macrophages from oxidized low-density lipoprotein-induced apoptosis by promoting efflux of 7-ketocholesterol via ABCG1. PNAS USA 2007; 104(38): 15093-8.
  102. Kennedy M.A., Barrera G.C., Nakamura K. et al. ABCG1 has a critical role in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation. Cell Metab. 2005; 1(2): 121-31.
  103. Bensinger S.J., Bradley M.N., Joseph S.B. et al. LXR Signaling Couples Sterol Metabolism to Proliferation in the Acquired Immune Response. Cell 2008; 134(1): 97-111.
  104. Vaughan A.M., Oram J.F. ABCA1 and ABCG1 or ABCG4 act sequentially to remove cellular cholesterol and generate cholesterol-rich HDL. J. Lipid Res. 2006; 47: 2433-43.
  105. Gelissen I.C., Harris M., Rye K.A. et al. ABCA1 and ABCG1 synergize to mediate cholesterol export to apoA-IArterioscler. Thromb. Vasc. Biol. 2006; 26: 534-40.
  106. Jessup W., Gelissen I.C., Gaus K. et al. Roles of ATP binding cassette transporters A1 and G1, scavenger receptor BI and membrane lipid domains in cholesterol export from macrophages. Curr. Opin. Lipidol. 2006; 17: 247-57.
  107. Oram J.F., Vaughan A.M. ATP-binding cassette cholesterol transporters and cardiovascular disease. Circ. Res. 2006; 99: 1031-43.
  108. Seres L., Cserepes J., Elkind N.B. et al. Functional ABCG1 expression induces apoptosis in macrophages and other cell types. Biochim. Biophys. Acta 2008; 1778(10): 2378-87.
  109. Lorkowski S., Kratz M., Wenner C. et al. Expression of the ATP-binding cassette transporter gene ABCG1 (ABC8) in Tangier disease. Biochem. Biophys. Res. Commun. 2001; 283: 821-30.
  110. Демина Е.П., Мирошникова В.В., Шварцман А.Л. Роль ABC-транспортеров A1 и G1 - ключевых белков обратного транспорта холестерина - в развитии атеросклероза. Молекулярная биология 2016; 50(2): 223-30.
  111. Klucken J., Buchler C., Orso E. et al. ABCG1 (ABC8), the human homolog of the Drosophila white gene, is a regulator of macrophage cholesterol and phospholipid transport. PNAS USA 2000; 97: 817-22.
  112. Venkateswaran A., Repa J.J., Lobaccaro J.M. et al. Human white/ murine ABC8 mRNA levels are highly induced in lipid-loaded macrophages. A transcriptional role for specific oxysterols. J. Biol. Chem. 2000; 275: 14700-7.
  113. Baldan A., Tarr P., Lee R. et al. ATP-binding cassette transporter G1 and lipid homeostasis. Curr. Opin. Lipidol. 2006; 17: 227-32.
  114. Sag D., Purcu D.U., Altunay M. The cholesterol transporter ABCG1 modulates macrophage polarization in human monocyte-derived macrophages. J. Immunol. 2019; 202: 187.
  115. Yvan-Charvet L., Pagler T.A., Seimon T.A. et al. ABCA1 and ABCG1 Protect Against Oxidative Stress-Induced Macrophage Apoptosis During Efferocytosis. Circ. Res. 2010; 106(12): 1861-9.
  116. Pommier A.J.C., Alves G., Viennois E. et al. Liver X. Receptor activation downregulates AKT survival signaling in lipid rafts and induces apoptosis of prostate cancer cells. Oncogene 2010; 29(18): 2712-23.
  117. Murphy A.J., Bijl N., Yvan-Charvet L. et al. Cholesterol efflux in megakaryocyte progenitors suppresses platelet production and thrombocytosis. Nat. Med. 2013; 19: 586-94.
  118. Westerterp M., Bochem A.E., Yvan-Charvet L. et al. ATP-binding cassette transporters, atherosclerosis, and inflammation. Circ. Res. 2014; 114(1): 157-70.
  119. Murphy A.J., Bijl N., Yvan-Charvet L. et al. Cholesterol efflux in megakaryocyte progenitors suppresses platelet production and thrombocytosis. Nat. Med. 2013; 19(5): 586-94.
  120. Vaughan A.M., Oram J.F. ABCA1 redistributes membrane cholesterol independent of apolipoprotein interactions. J. Lipid Res. 2003; 44(7): 1373-80.
  121. Vaughan A.M., Oram J.F. ABCG1 Redistributes Cell Cholesterol to Domains Removable by High Density Lipoprotein but Not by Lipid-depleted Apolipoproteins. J. Biol. Chem. 2005; 280(34): 30150-7.
  122. Janvilisri T., Venter H., Shahi S. et al. Sterol transport by the human breast cancer resistance protein (ABCG2) expressed in Lactococcus lactis. J. Biol. Chem. 2003; 278(23): 20645-51.
  123. Pal A., Mehn D., Molnar E. Cholesterol potentiates ABCG2 activity in a heterologous expression system: improved in vitro model to study function of human ABCG2. J. Pharmacol. Exp. Ther. 2007; 321(3): 1085-94.
  124. Yu L., Hammer R.E., Li-Hawkins J. et al. Disruption of Abcg5 and Abcg8 in mice reveals their crucial role in biliary cholesterol secretion. PNAS USA 2002; 99(25): 16237-42.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies