Manifestation of immune correcting effect of cryopreserved cells of fetal liver of different gestation terms under development conditions of experimental model of graft versus host reaction



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

In the research there has been estimated an immune correcting activity of cryopreserved and native fetal liver cells (FLCs) of different gestation terms in experimental model of local GVHR CIGVHR). IGVHR was induced in C57BI/6 mice by means of subcutaneous introduction of CBA/H lymph nodes CLN) cells into the hindpaw pad. In 24 hrs after initiation of IGVHR the mcie were intravenously injected with either native CnFLCs) or cryopreserved FLCs (cFLCs) of the 14th and 18th gestation days of CBA mice. To the 5th day after initiation of pathology the following indices were estimated: GVHR index, content of T (FoxP3+, CD4+CD25+ cells) of LNs with flow cytometer FACS Calibur (Becton Dicknson, USA), the expression of tfg-beta gene by means of PCR; content of IL-2, IL-10, TNF-alpha in blood serum of animals by means of immune enzyme method with analyzer Stat Fax 2100 (USA). It has been established that during induction of IGVDR there are manifested the signs characteristics for the pathologies of immune genesis. Under development of GCH, FLCs minimize clinical signs of pathologies and intensity of development of immune inflammatory reaction. Therapeutic activity of FLCs in greater extent correlated to the content in LNs of F0XP3+ cells and expression of tgf-beta gene, but not to the content of CD4+CD25+ cells and rate of their fluorescence. With the increasing of gestation terms from 14 post-coital days to 18 ones immune correcting activity of FLCs reduced. However after cryopreservation the FLCs-18 gained immune correcting activity of nFLC-14.

About the authors

AN Gol'tsev

T G Dubrava

E D Lutsenko

L V Ostashkova

I Yu Matsevitaya

M V Ostankov

M A Sirous

E A Porozhan

K A Gol'tsev

A Yu Dimitrov

A N Goltsev

Institute for Problems of Cryobiology and Cryomedlcine of the National Academy of Sciences of Ukraine, Kharkov

Institute for Problems of Cryobiology and Cryomedlcine of the National Academy of Sciences of Ukraine, Kharkov

T G Dubrava

Institute for Problems of Cryobiology and Cryomedlcine of the National Academy of Sciences of Ukraine, Kharkov

Institute for Problems of Cryobiology and Cryomedlcine of the National Academy of Sciences of Ukraine, Kharkov

ED Lutsenko

Institute for Problems of Cryobiology and Cryomedlcine of the National Academy of Sciences of Ukraine, Kharkov

Institute for Problems of Cryobiology and Cryomedlcine of the National Academy of Sciences of Ukraine, Kharkov

L V Ostankova

Institute for Problems of Cryobiology and Cryomedlcine of the National Academy of Sciences of Ukraine, Kharkov

Institute for Problems of Cryobiology and Cryomedlcine of the National Academy of Sciences of Ukraine, Kharkov

I Yu Matsevitaya

Institute for Problems of Cryobiology and Cryomedlcine of the National Academy of Sciences of Ukraine, Kharkov

Institute for Problems of Cryobiology and Cryomedlcine of the National Academy of Sciences of Ukraine, Kharkov

M V Ostankov

Institute for Problems of Cryobiology and Cryomedlcine of the National Academy of Sciences of Ukraine, Kharkov

Institute for Problems of Cryobiology and Cryomedlcine of the National Academy of Sciences of Ukraine, Kharkov

MA Sirous

Institute for Problems of Cryobiology and Cryomedlcine of the National Academy of Sciences of Ukraine, Kharkov

Institute for Problems of Cryobiology and Cryomedlcine of the National Academy of Sciences of Ukraine, Kharkov

E A Porozhan

Institute for Problems of Cryobiology and Cryomedlcine of the National Academy of Sciences of Ukraine, Kharkov

Institute for Problems of Cryobiology and Cryomedlcine of the National Academy of Sciences of Ukraine, Kharkov

KA Goltsev

Institute for Problems of Cryobiology and Cryomedlcine of the National Academy of Sciences of Ukraine, Kharkov

Institute for Problems of Cryobiology and Cryomedlcine of the National Academy of Sciences of Ukraine, Kharkov

A Yu Dimitrov

Institute for Problems of Cryobiology and Cryomedlcine of the National Academy of Sciences of Ukraine, Kharkov

Institute for Problems of Cryobiology and Cryomedlcine of the National Academy of Sciences of Ukraine, Kharkov

References

  1. Шевелев А.С. Реакция «трансплантат против хозяина» и трансплантационная болезнь. Москва: Медицина; 1976: 237.
  2. Грищенко В.И., Гольцев А.Н. Трансплантация продуктов эмйриофетоплацентарного комплекса. От понимания механизма действия к повышению эффективности применения. Пробл. криобиологии 2002; [11: 54-84.
  3. Кудрина Т.П., Алтынбаева Р.Ф., Буров Ю.В. Методрекомендации по оценке иммунотоксических свойств фармакологических средств. Москва; 1ЭЭ2: 39.
  4. Belkaid Y., Piccirillo С.A., Mendez S. et al. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 2002; 420(2): 502-7.
  5. Ярилин А.А. Естественные регуляторные T-клетки и фактор F0XP3. Иммунология 200Б; [3): 176-88.
  6. Hirohata S., YanagidaT., Hashimoto H. et al. Suppresive influences of methotrexate on the generation of CD14+ monocytelineage cells from bone marrow of patiens with rheumatoid artritis. Clin. Immunol. Immunopathol. 1999; 91(1]; 84-9.
  7. Djouad F., Plence P., Bony С et al. Immunosupressive effect of mesenchymal stem cells favors tumor growth in allogenic animals. Blood 2003; 102: 3837-44.
  8. Le Blanc K., Tammik L, Sundberg B. et al. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand. J. Immunol. 2003; 57: 11-20.
  9. Cognet P.A., Minguell J.J. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J. Cell Physiol. 1999; 181: 67-73.
  10. Marcos M.A.R., Morales-Alcelay S., Godin I.E. et al. Antigenic phenotype and gene expression pattern of lymphohemopoietic progenitors during early mouse ontogeny. J. Immunol. 1997; 158: 2627-37.
  11. Гольцев A.H., Дубрава Т.Г., Останкова Л.В. и др. Особенности влияния криоконсервирования на функциональный потенциал стволовых кроветворных клеток фетальной печени разных сроков гестации. Пробл. криобиологии 2009; 19(2): 186-99.
  12. GoltsevA.N., Grischenko V.I., Sirous М.А. etal. Cryopreservation: an optimizing factor for therapeutic potential of fetoplacental complex products Biopreservation and biobanking 2009; 7(1): 29-38.
  13. Молекулярная клиническая диагностика. Под ред. С. Херрингтона и Дж. Макги. Москва: Мир; 1999: 558.
  14. Пат. № 2004031694 УкраТна, МПК А61В5/00. Cnoci6 пор1вняльноТ оцшки ефективност1 лкування. Гольцев A.M., Останкова Л.В., Луценко О.Д. и др. Заявлено 09.03.04; Пул. 15.12.2004. Бюл.(12): 3.12.
  15. Sakaguchi S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunologica tolerance to self and non-self. Nat. Immunol. 2005; 6: 345-52.
  16. Sugita S., Futagami Y., Hori S., Mochizuki M. Transforming growth factor producing FoxP3+CD4+CD25+ T cells by iris pigment epithelial cells display regulatory phenotype and acquire regulatory functions. Exp. Eye Res. 2007; 85(5): 626-36.
  17. Sakaguchi S. Animal models of autoimmunity and their relevance to human diseases. Curr. Opin. Immunol. 2000; 12: 684-90.
  18. Mellor A.L., Chandler Ph., Lee G.K. et al. Indoleamine 2,3-dioxygenase, immunosupression and pregnancy. J. Reproductive Immunol. 2002; 57: 143-50.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2010 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies