Life without water: cryptobiosis of invertebrates as a model for next generation techmologyof biomaterials preservation

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

To date, advances in the field of tissue engineering,
cell transplantation and genetic engineering have made
the biological materials of different origin an important
therapeutic tool in clinical medicine. Currently, cells
preservation is achieved by freezing at -80°С or in liquid
nitrogen. Cryopreservation technology is expensive and
has considerable limits during transportation. Preservation
of viable biological material in dry state under ambient
temperature is considered as attractive, but yet fully
achieved alternative. There are organisms which are able to
survive complete water loss. Understanding of mechanisms
underlying dehydration tolerance will allow the development
of dry preservation technology for molecules, cells and
organs, and further use of these methods in medicine,
pharmacology and biotechnology.

About the authors

E I Shagimardanova,

Kazan (Volga region) federal university, Kazan

Kazan (Volga region) federal university, Kazan

M R Sharipova,

Kazan (Volga region) federal university, Kazan

Kazan (Volga region) federal university, Kazan

A A Rizvanov,

Kazan (Volga region) federal university, Kazan

Kazan (Volga region) federal university, Kazan

I S Zaharov,

Kazan (Volga region) federal university, Kazan

Kazan (Volga region) federal university, Kazan

O A Gusev

Kazan (Volga region) federal university, Kazan

Kazan (Volga region) federal university, Kazan

References

  1. Julca I., Alaminos M., González-López J. et al. Xeroprotectants for the stabilization of biomaterials. Biotechnol. Adv. 2012; in press.
  2. Wakayama T., Yanagimachi R. Development of normal mice from oocytes injected with freeze-dried spermatozoa. Nat. Biotechnol. 1998; 16(7): 639-41.
  3. Loi P., Matzukawa K., Ptak G. et al. Nuclear transfer of freezedried somatic cells into enucleated sheep oocytes. Reprod. Domest. Anim. 2008; 43: 417-22.
  4. Quan G.B., Han Y., Liu M.X. et al. Addition of oligosaccharide decreases the freezing lesions on human red blood cell membrane in the presence of dextran and glucose. Cryobiology 2011; 62(2): 135-44.
  5. Zhou X.L., Zhu H., Zhang S.Z. et al. Freeze-drying of human platelets: influence of intracellular trehalose and extracellular protectants. Cryo. Letters. 2006; 27: 43-50.
  6. Ono T., Mizutani E., Li C. et al. Nuclear transfer preserves the nuclear genome of freeze-dried mouse cells. J. Reprod. Dev. 2008; 54(6): 486-91.
  7. García de Castro A., Tunnacliffe A. Intracellular trehalose improves osmotolerance but not desiccation tolerance in mammalian cells. FEBS Lett. 2000; 487(2): 199-202.
  8. Eroglu A., Russo M.J., Bieganski R et al. Intracellular trehalose improves the survival of cryopreserved mammalian cells. Nat. Biotechnol. 2000; 18(2): 163-7.
  9. Lynch A.L., Slater N.K. Influence of intracellular trehalose concentration and pre-freeze cell volume on the cryosurvival of rapidly frozen human erythrocytes. Cryobiology 2011; 63(1): 26-31.
  10. Buchanan S.S., Pyatt D.W., Carpenter J.F. Preservation of differentiation and clonogenic potential of human hematopoietic stem and progenitor cells during lyophilization and ambient storage. PLoS One 2010; 5(9): 12518.
  11. Guo N., Puhlev I., Brown D.R. et al. Trehalose expression confers desiccation tolerance on human cells. Nat. Biotechnol. 2000; 18(2): 168-71.
  12. Chakraborty N., Menze M.A., Elmoazzen H. et al. Trehalose transporter from African chironomid larvae improves desiccation tolerance of Chinese hamster ovary cells. Cryobiology 2012; 64(2): 91-6
  13. Elliott G.D., Liu X.H., Cusick J.L. et al. Trehalose uptake through P2X7 purinergic channels provides dehydration protection. Cryobiology 2006; 52(1): 114-27.
  14. Eroglu A., Lawitts J.A., Toner M. Quantitative microinjection of trehalose into mouse oocytes and zygotes, and its effect on development. Cryobiology 2003; 46(2): 121-34.
  15. Hubel A., Darr T.B. Passive loading of tregalose into cells. Cryobiology 2000; 45: 227.
  16. Chakraborty N., Biswas D., Parker W. et al. A role for microwave processing in the dry preservation of mammalian cells. Biotechnol. Bioeng. 2008; 100(4): 782-96.
  17. Clegg J.S. Cryptobiosis - a peculiar state of biological organization. Comp. Biochem. Physiol. B. 2001; 128: 613-24.
  18. Rebecchini L., Altiero T., Guidetti R. Anhydrobiosis: the extreme limit of dessication tolerance. Invert. Surv. J. 2007; 4: 65-81.
  19. Nelson D.R. Current status of the tardigrada: evolution and ecology. Integr. Comp. Biol. 2002; 42: 652-59.
  20. Watanabe M. Anhydrobisis in invertebrated. Appl. Entom. Zool. 2006; 41: 15-31.
  21. Watanabe M., Kikawada T., Minagawa N. et al. Mechanism allowing an insect to survive complete dehydration and extreme tempetatures. 2002. J. Exp. Biol. 205: 2799-802.
  22. Cornette R., Kikawada T. The induction of anhydrobiosis in the sleeping chironomid: current status of our knowledge. IUBMB Life 2011; 63(6): 419-29.
  23. Watanabe M., Kikawada T., Okuda T. Increase of internal ion concentration triggers trehalose synthesis associated with cryptobiosis in larvae of Polypedilum vanderplanki. J. Exp. Biol. 2003; 206: 2281-6.
  24. Carpenter J.F., Crowe J.H. An infrared spectroscopic study of the interactions of carbohydrates with dried proteins. Biochemistry 1989; 28(9): 3916-22.
  25. Oku K., Watanabe H., Kubota M. et al. NMR and quantum chemical study on the OH...pi and CH...O interactions between trehalose and unsaturated fatty acids: implication for the mechanism of antioxidant function of trehalose. J. Am. Chem. Soc. 2003; 125(42): 12739-48.
  26. Berjak P., Farrant J.M., Pammenter N.W. Seed desiccationtolerance mechanism. In: Jenks M.A., and Wood A.J., editors. Plant Desiccation Tolerance. Blackwell, Oxford; 2007. p 151-92.
  27. Gusev O., Cornette R., Kikawada T. et al. Expression of heat shock protein-coding genes associated with anhydrobiosis in an African chironomid Polypedilum vanderplanki. Cell Stress & Chaperones 2011; 16(1): 81-90.
  28. Schill R.O., Steinbruck G.H., Kohler H.R. Stress gene (hsp70) and quantitative expression in Milnesium tardigradum (Tardigrada) during active and cryptobitic stages. J. Exp. Biol. 2004; 207:1607-13.
  29. Liang P., MacRae T.H. The synthesis of a small heat shock/ alpha-crystallin protein in Artemia and its relationship to stress tolerance during development. Dev. Biol. 1999; 207: 445-56.
  30. Reuner A., Hengherr S., Brahim M. et al. Stress responce in tardigrades: differential gene expression of molecular shaperones. Cell Stress Chaperones 2010; 15: 423-30.
  31. Hong-Bo S., Zong-Suo L., Ming-An S. LEA proteins in higher plants: structure, function, gene expression and regulation. Colloids Surf B Biointerfaces 2005; 45(3-4): 131-5.
  32. Browne J., Tunnacliffe A., Burnell A. Plant desiccation gene found in a nematode. Nature 2002; 416: 38.
  33. Hand S.C., Menze M.A., Toner M. et al. LEA proteins during water stress: not just for plants anymore. Annu. Rev. Physiol. 2011; 73: 115-34.
  34. Tunnacliffe A., Wise M. The continuing conundrum of the LEA proteins. Naturwissenschaften 2007; 94: 791-812.
  35. Goyal K., Walton L.J., Tunnacliffe A. LEA proteins prevent protein aggregation due to water stress. Biochem. J. 2005; 338: 151-7.
  36. Cornette R., Kanamori Y., Watanabe M. et al. Identification of anhydrobiosis-related genes from an expressed sequence tag database in the cryptobiotic midge Polypedilum vanderplanki (diptera; chironomidae). J. Biol. Chem. 2010: 285: 35889-99.
  37. Schokraie E., Hotz-Wagenblatt A., Warnken U. et al. Proteomic analysis of tardigrades: towards a better understanding of molecular mechanisms by anhydrobiotic organisms. PlosOne 2010; 5:e9502.
  38. Gusev O., Nakahara Y., Vanyagina V. et al. Anhydrobiosisassociated nuclear DNA damage and repair in the sleeping chironomid: Linkage with radioresistance. PLoS ONE 2010; 5(11): e14008.
  39. Jenks M.A., Wood A.J. Plant desiccation tolerance. Ames, Iowa: Blackwell Pub; 2007.
  40. Reardon W., Chakrabortee S., Pereira T.G. et al. Expression profiling and cross-species RNA interference (RNAi) of desiccationinduced transcripts in the anhydrobiotic nematode Aphelenchus avenaue. BMC Mol. Biol. 2010; 11: 6.
  41. Gladyshev E., Meselson M. Extreme resistance of bdelloid rotifers to ionizing radiation. PNAS USA 2008; 105: 5139-44.
  42. Newmann S., Reuner A., Brummer F. et al. DNA damage in storage cells of anhydrobiotic tardigrades. Comp. Biochen. Physiol. Mol. Integr. Physiol. 2009; 153: 425-29.
  43. Cashio P., Lee T.V., Bergmann A. Genetic control of programmed cell death in Drosophilla melanogaster. Semin. Cell Dev. Biol. 2005; 16: 225-35.
  44. Natan D., Nagler A., Arav A. Freeze-drying of mononuclear cells derived from umbilical cord blood followed by colony formation. PLoS One 2009; 4(4): e5240.
  45. Sasnoor L.M., Kale V.P., Limaye L.S. Prevention of apoptosis as a possible mechanism behind improved cryoprotection of hematopoietic cells by catalase and trehalose. Transplantation 2005; 80(9): 1251- 60.
  46. Sasnoor L.M., Kale V.P., Limaye L.S. A combination of catalase and trehalose as additives to conventional freezing medium results in improved cryoprotection of human hematopoietic cells with reference to in vitro migration and adhesion properties. Transfusion 2005; 45(4): 622-33.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2012 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies