Sinusoidal liver cells and bone marrow cells as components of the common functional systemfor regulation of recovery morphogenesis of healthy and damaged liver



如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

This review presents current information about the
cooperative interaction of sinusoidal liver cells and bone marrow
cells at the processes of physiological, reparative and fibrosing
liver regeneration. It is shown that the stem / progenitor cells
of bone marrow (hematopoietic and mesenchymal stromal
cells) supplement regulatory role of liver stem cells (first
of all stellate cells - Ito cells), reduce the seriousness of
inflammation and fibrosis, and thereby normalize the recovery
process of damaged liver regeneration. It is believed that the
use of mesenchymal stromal cells of bone marrow is the most
future forward strategy. However, to form a final opinion on
the regenerative capacity of autologous and allogeneic bone
marrow cells at hepatic failure large-scale double-blind clinical
trials should be carried out.

作者简介

N Onischenko

V.I. Shumakov Federal Research Center for Transplantology and Artificial Organs, the Ministry of Public Healthand Social Development, Moscow

V.I. Shumakov Federal Research Center for Transplantology and Artificial Organs, the Ministry of Public Healthand Social Development, Moscow

A Lyundup

V.I. Shumakov Federal Research Center for Transplantology and Artificial Organs, the Ministry of Public Healthand Social Development, Moscow

V.I. Shumakov Federal Research Center for Transplantology and Artificial Organs, the Ministry of Public Healthand Social Development, Moscow

R Deev

Human Stem Cells Institute, Moscow

Human Stem Cells Institute, Moscow

M Shagidulin

V.I. Shumakov Federal Research Center for Transplantology and Artificial Organs, the Ministry of Public Healthand Social Development, Moscow

V.I. Shumakov Federal Research Center for Transplantology and Artificial Organs, the Ministry of Public Healthand Social Development, Moscow

M Krasheninnikov

V.I. Shumakov Federal Research Center for Transplantology and Artificial Organs, the Ministry of Public Healthand Social Development, Moscow

V.I. Shumakov Federal Research Center for Transplantology and Artificial Organs, the Ministry of Public Healthand Social Development, Moscow

参考

  1. Gennero L., Roos M.A., Sperber K. et al. Pluripotent plasticity of stem cells and liver repopulation. Cell Biochem. Funct. 2010; 28: 178-89.
  2. Шумаков В.И., Онищенко Н.А. Биологические резервы клеток костного мозга и коррекция органных дисфункций. М.: Лавр; 2009.
  3. Маянский Д.Н. Роль стромы печени в патогенезе гепатитов. Вестник АМН СССР 1988; 5: 81-8.
  4. Geerts A. History, heterogeneity, developmental biology, and functions of quiescent hepatic stellate cells. Semin. Liver Dis. 2001; 21: 311-35.
  5. Щеглев А.И., Мишнев О.Д. Структурно-метаболическая ха- рактеристика синусоидальных клеток печени. Успехи совр. Биол. 1991; 3(1): 73-82.
  6. Секамова С.М., Бекетова Т.П. Функциональная морфология печени. В: Серов В.В., Лапиш К.М., редакторы. Морфологическая диагностика заболеваний печени. М.: Медицина 1989;8-36.
  7. Friedman S.L. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J. Biol. Chem. 2000; 275: 2247-50.
  8. Schuppan D., Ruehl M., Somasundaram R. et al. Matrix as modulator of stellate cell and hepatic fibrogenesis. Semin. Liver Dis. 2001; 21: 351-72.
  9. Шерлок Ш., Дули Д. Заболевания печени и желчных путей. М.: ГЭОТАР-Медиа; 2002
  10. Yurchenco V., Analysis of basement membrane self-assembly and cellular interactions with native and recombinant glycoproteins. Methods Cell Biol. 2002; 69: 111-44.
  11. Онищенко Н.А. Регуляция восстановительных процессов в пе- чени в норме и при патологии. В: Шумакова В.И., Онищенко Н.А., редакторы. Лечение печеночной недостаточности методами трансплантации и экстракорпорального подключения печени и других тканей. М.: ВИНИТИ 1994; 76-141.
  12. Kim T.H., Mars W.M., Stolz D.B. et al. Extracellular matrix remodeling at the early stages of liver regeneration in the rat. J. Hepatol. 1997; 26: 896-904.
  13. Friedman S.L. Hepatic stellate cells: protean, multifunctional and enigmatic cells of liver. Physiol. Rev. 2008; 88: 125-72.
  14. Cassiman D., Libbrecht L., Desmet V. et al. Hepatic stellate cell/myofibroblast subpopulations in fibrotic human and rat livers. J. Hepatol. 2002; 36: 200-09.
  15. Corpechot C., Barbu V., Wendum D. et al. Hypoxia-induced VEGF and collagen I expressions are associated with angiogenesis and fibrogenesis in experimental cirrhosis. Hepatology 2002; 35: 1010-21
  16. Rockey D.C. Vascular mediators in the injured liver. Hepatology 2003; 37: 4-12.
  17. Гумерова А.А., Киясов А.П. Могут ли перисинусоидальные клетки быть региональными стволовыми клетками (прогениторны- ми) клетками печени? Клеточная трансплантология и тканевая ин- женерия 2010;5(1): 33-40.
  18. Панин Л.Е., Соколова М.В., Усынин И.Я. Роль мононукле- арной фагоцитирующей системы в регуляции биосинтеза белка в переживающих срезах печени и гепатоцитах белых крыс. Бюлл. экс- пер. биол. мед. 1991; 1: 108-9.
  19. Косых А.А., Бесараб И.Ю., Рощина Н.М. Роль соединитель- ной ткани в репаративной регенерации нормальной и цирротически измененной печени. В кн.: Солопаев Б.П. Регенерация, адаптация, гомеостаз. Горький. 1990; 21-30.
  20. Michalopoulos G.K, De Frances M.C. Liver regeneration. Science 1997; 276(5309): 60-6
  21. Плющ И.В., Цырендоржиев Д.Д., Зубахин А.А. и др. Фило- генная и гемопоэзстимулирующая активности макрофагов печени и легких при регенерации печени. Бюлл. экспер. биол. мед. 1996; 11: 494-8.
  22. Masumoto A., Yamamoto N. Cell characterization of a hepatocyte growth factor derived from nonparenchymal liver cells. Struct. Funct. 1993; 18(2): 87-94.
  23. Gaca M.D., Pickering J.A., Arthur M.J. et al. Human and rat hepatic stellate cells produce stem cell factor: a possible mechanism for mast cell recruitment in liver fibrosis. J. Hepatol. 1999; 30(5): 850-8.
  24. Tsukamoto H. Redox regulation of cytokine expression in Kupffer cells. Antioxid Redox Signal 2002; 4: 741-8.
  25. Han Y.P., Zhou L., Wang J. et al. Essential role of matrix metalloproteinases in interleukin-1-induced myofibroblastic activation of hepatic stellate cell in collagen. J. Biol. Chem. 2004; 279: 4820-8.
  26. Friedman S., Rockey D. Montgomery B. Hepatic fibrosis 2006: report of the third AASLD single topic conference. Hepatology 2006; 45: 242-9.
  27. Schirmacher P., Geerts A., Pietrangelo A. et al. Hepatocyte growth factor/hepatopoietin a is expressed in fat-storing cells from rat liver but not myofibroblast-like cells derived from fat-storing cells. Hepatology 1992; 15: 5-11.
  28. Maher J.J. Cell-specific expression of hepatocyte growth factor in liver. upregulation in sinusoidal endothelial cells after carbon tetrachloride. J. Clin. Invest. 1993; 91: 2244-52.
  29. Fujio K., Evarts R.P., Hu Z. et al. Expression of stem cell factor and its receptor, c-kit, during liver regeneration from putative stem cells in adult rat. Lab. Invest. 1994; 70: 511-6.
  30. Yoshino R., Miura K., Segawa D. et al. Epimorphin expression and stellate cell status in mouse liver injury. Hepatol. Res. 2006, 34: 238-49.
  31. Asahina K., Sato H., Yamasaki C. et al. Pleiotrophin/heparinbinding growth-assosiated molecule as a mitogen of rat hepatocytes and its role in regeneration and development of liver. Am. J. Pathol. 2002; 160: 2191-205.
  32. Sawitza I., Kordes C., Hausinger D. The niche of stellate cells within rat liver. J. Hepatol. 2009; 50(5): 1617-24.
  33. Arenson D.M., Friedman S., Bissel M. Formation of extracellular matrix in normal rat liver: lipocytes as a mayor source of proteoglycan. Gastroenterology 1998; 95: 441-7.
  34. Arthur M.J., Friedman S.L., Roll F.J. et al. Lipocytes from normal rat liver release a neutral metalloproteinase that degrades basement membrane (type IV) collagen. J. Clin. Invest. 1989; 84(4): 1076-85.
  35. Arthur M.J. Degradation of matrix proteins in liver fibrosis. Pathol. Res. Pract. 1994; 190(9-10): 825-33.
  36. Ben S., Li X., Xu F. et al. Treatment with anti-CC chemokine receptor 3 monoclonal antibody or dexamethasone inhibits the migration and differentiation of bone marrow CD34 progenitor cells in an allergic mouse model. Allergy 2008; 63(9): 1164-76.
  37. Чалисова Н.И., Князькин И.В., Кветной И.М. Нейроиммуно- эндокринные механизмы действия пептидов и аминокислот в ткане- вых культурах. СПб: Деан; 2005.
  38. Ярыгин К.Н. Роль резидентных и циркулирующих стволовых клеток в физиологической и репаративной регенерации печени. Па- тол. Физиол. Экспер. Терапия. 2008; 1: 2-7.
  39. Fausto N. Hepatocyte differentiation and liver progenitor cells. Curr. Opin. Cell Biol.1990; 2: 1036-42.
  40. Sell S. Is there a liver stem cell? Cancer Res. 1990; 50(13): 3811-5.
  41. Sigal S.H., Brill S., Fiorino A.S. et al. The liver as a stem cell and lineage system. Am. J. Physiol. 1992; 263(2 Pt 1): 139-48.
  42. Grompe M. The role of bone marrow stem cells in liver regeneration. Semin. Liver Dis. 2003; 23(4): 363-72.
  43. Petersen B.E., Grossbard B., Hatch H. et al. Mouse A-6- positive hepatic oval cells also express several hematopoietic stem cell markers. Hepatology 2003; 37: 632-40.
  44. Schwartz R.E., Reyes M., Koodie J. et al. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J. Clin. Ivest. 2002: 109: 1291-302.
  45. Черных Е.Р., Останин А.А., Пальцев А.И. Стволовые клетки в регенерации печени: новые подходы к лечению печеночной недо- статочности. Гепатология 2004; 5: 24-33.
  46. Terada N., Hamazaki T., Oka M. et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 2002;416: 542-5.
  47. Гумерова А.А., Киясов А.П., Калигин М.С. и др. Участие клеток Ито в гистогенезе и регенерации печени. Клеточная транс- плантология и тканевая инженерия 2007; 2(4): 39-46.
  48. Kiassov A.P., Van Euken P., Van Pelt J.F. et al. Desmin expressing nonhematopoietic liver cells during rat liver development: an immunohistochemical and morphometric study. Differentiation 1995; 59: 253-8.
  49. Paku S., Schur J., Nagy P. et al. Origin and structural evolution of the early proliferating oval cells in rat liver. Am. J. Hepatol. 2001; 158: 1313-23.
  50. Киясов А.П., Гумерова А.А., Титова М.А. Овальные клетки - предполагаемые стволовые клетки печени или гепатобласты? Клету- точная трансплантология и тканевая инженерия 2006; 2(4): 55-8.
  51. Suskind D.L., Muench M.O. Searching for common stem cells of the hepatic and hematopoietic systems in the human fetal liver: CD34+ cytokeratin 7/8+ cells express markers for stellate cells. J. Hepatol. 2004; 40: 261-8.
  52. Kordes C., Sawitzal J., Miller-Marbach A. et al. CD34 hepatic stellate cells are progenitor cells. Biochem., Biophys. Res. Commun. 2007, 352(2): 410-7.
  53. Yang L., Jung Y., Omenetti A. et al. Fate-mapping evidence that hepatic stellate cells are epithelial progenitors in adult mouse livers. Stem Cells 2008; 26(8): 2104-13.
  54. Wang P., Liu T., Cong M. et al. Expression of extracellular matrix genes in cultured hepatic oval cells: an origin of hepatic stellate cells through transforming growth factor beta? Liver Int. 2009; 29(4): 575-84.
  55. Han Y.P., Yan C., Zhou L. et al. A matrix metalloproteinase-9 activation cascade by hepatic stellate cells in trans-differentiation in the three-dimensional extracellular matrix. J. Biol. Chem. 2007; 282(17): 12928-39.
  56. Arthur M.J., Stanley A., Iredale J.P. et al. Secretion of 72 kDa type IV collagenase/gelatinase by cultured human lipocytes. Analysis of gene expression, protein synthesis and proteinase activity. J. Biochem. 1992; 287 (3): 701-7.
  57. Schaefer B., Rivas-Estilla A.M., Meraz-Cruz N. et al. Reciprocal modulation of matrix metalloproteinase-13 and type I collagen genes in rat hepatic stellate cells. Am. J. Pathol. 2003; 162(6): 1771-80.
  58. Petersen B.E., Bowen W.C., Patrene K.D. et al. Bone marrow as a potential source of hepatic oval cells. Science 1999; 284(5417): 1168-70.
  59. Sato Y., Araki H., Kato J. et al. Human mesenchymal stem cells xenografted directly to rat liver are differentiated into human hepatocytes without fusion. Blood 2005; 106(2): 756-63.
  60. Taléns-Visconti R., Bonora A., Jover R. et al. Hepatogenic differentiation of human mesenchymal stem cells from adipose tissue in comparison with bone marrow mesenchymal stem cells. World J. Gastroenterol. 2006; 12(36): 5834-45.
  61. Taléns-Visconti R., Bonora A., Jover R. et al. Human mesenchymal stem cells from adipose tissue: Differentiation into hepatic lineage. Toxicol. In Vitro. 2007; 21(2): 324-9.
  62. Lange C., Bruns H., Kluth D. et al. Hepatocytic differentiation of mesenchymal stem cells in cocultures with fetal liver cells. World J. Gastroenterol. 2006; 12(15): 2394-7.
  63. Киясов A.П., Исламов Р.Р., Ризванов А.А. и др. Клеточная терапия генетически модифицированными стволовыми клетками пуповинной крови трансгенных G93A мышей, экспрессирующих фенотип бокового амиотрофического склероза. Итоговая конфе- ренция по результатам выполнения мероприятий за 2007 год в рамках приоритетного направления «Живые системы» ФЦП «Ис- следования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2007-2012 годы». Москва: 2007; 65-6.
  64. Baba S., Fujii H., Hirose T. et al. Commitment of bone marrow cells to hepatic stellate cells in mouse. J. Hepatol. 2004; 40: 255-60.
  65. Hoppo T., Fujii H., Hirose T. et al. Thy1-positive mesenchymal cells promote the maturation of CD49f-positive hepatic progenitor cells in the mouse fetal liver. Hepatology 2004; 39(5): 1362-70.
  66. Dezso K., Jelnes P., László V. et al. Thy-1 is expressed in hepatic myofibroblasts and not oval cells in stem cell-mediated liver regeneration. Am. J. Pathol. 2007; 171(5): 1529-37.
  67. Tocci A., Parolini I., Gabbianelli M. et al. Dual action of retinoic acid on human embryonic/fetal hematopoiesis: blockade of primitive progenitor proliferation and shift from multipotent/erythroid/monocytic to granulocytic differentiation program. Blood 1996; 88(8): 2878-88.
  68. Watt F.M., Hogan B.L. Out of Eden: stem cells and their niches. Science 2000; 287(5457): 1427-30.
  69. Колпащикова И.Ф. Общие и местные изменения в организ- ме при экспериментальном повреждении печени и ее регенерации (диссертация). Казань 1982.
  70. Marra F., Efsen E., Romanelli R.G. et al. Ligands of peroxisome proliferator-activated receptor gamma modulate profibrogenic and proinflammatory actions in hepatic stellate cells. Gastroenterology 2000; 119: 466-78.
  71. Canbay A., Taimr P., Torok N. et al. Apoptotic body engulfment by a human stellate cell line is profibrogenic. Lab. Invest. 2003; 83: 655-63.
  72. Safadi R., Ohta M., Alvarez C.E. et al. Immune stimulation of hepatic fibrogenesis by CD8 cells and attenuation by transgenic interleukin-10 from hepatocytes. Gastroenterology 2004; 127(3): 870-82.
  73. Viñas O., Bataller R., Sancho-Bru P. et al. Human hepatic stellate cells show features of antigen-presenting cells and stimulate lymphocyte proliferation. Hepatology 2003; 38: 919-29.
  74. Wynn, T.A. Cellular and molecular mechanisms of fibrosis. J. Pathol. 2008; 214: 199-210.
  75. Dai L.J, Li H.Y. The therapeutic potential of bone marrowderived mesenchymal stem cells on hepatic cirrhosis. Stem Cell Res. 2009; 2(1): 16-25.
  76. Pinzani M. PDGF and signal transduction in hepatic stellate cells. Front. Biosci. 2002; 7: 1720-6.
  77. Gressner A.M., Weiskirchen R., Breitkopf K. et al. Roles of TGF-beta in hepatic fibrosis. Front. Biosci. 2002; 17: 793-807.
  78. Wells R.G., Kruglov E., Dranoff J.A. Autocrine release of TGFbeta by portal fibroblasts regulates cell growth. FEBS Lett. 2004; 559(1-3): 107-10.
  79. Arthur M.J. Reversibility of liver fibrosis and cirrhosis following treatment for hepatitis C. Gastroenterology 2002; 122: 1525-8.
  80. Issa R., Zhou X., Constandinou C.M. et al. Spontaneous recovery from micronodular cirrhosis: evidence for incomplete resolution associated with matrix cross-linking. Gastroenterology 2004; 126: 1795-808.
  81. Friedman S.L. Reversibility of hepatic fibrosis and cirrhosis - is it all hype? Nat. Clin. Pract. Gastroenterol. Hepatol. 2007; 4: 236-7.
  82. Parekkadan B., Poll D., Suganuma K. et al.. Mesenchymal stem cell-derived molecules reverse fulmimant hepatic failure. PLoS One 2007; 2(9): e941.
  83. Parekkadan B., Poll D., Megeed Z. et al.. Immunomodulation of hepatic stellate cells by mesenchymal stem cells. Biochem. Biophys. Res. Commu. 2007, 363; 247-52.
  84. Poll D., Parekkadan B., Cho C.H. et al. Mesenchymal stem cellderived molecules directly modulate hepatocellular death and regeneration in vitro and in vivo. Hepatology 2008; 47: 1634-43.
  85. Sakaida I. et al. Cell therapy with bone marrow cell for liver cirrhosis. Electrophoresis 2006; 50: 7-12.
  86. Sakaida I., Terai S., Yamamoto N. et al. Transplantation of bone marrow cells reduces CCl4-induced liver fibrosis in mice. Hepatology 2004; 40: 1304-11.
  87. Terai S., Sakaida I., Yamamoto N. et al. An in vivo model for monitoring transdifferentiation of bone marrow cells into functional hepatocytes. J. Biochem. 2003; 134: 551-8.
  88. Terai S., Ishikawa T., Omori K. et al. Improved liver function in patients with liver cirrhosis after autologous bone marrow cell infusion therapy. Stem Cells 2006; 24(10): 2292-8.
  89. Kuo T.K., Hung S. et al. Stem cell therapy for liver disease: parameters governing the success for using bone marrow mesenchymal stem cells. Gastroenterology 2008; 134: 2111-21.
  90. Yu Y., Yao A.H., Chen N., et al. Mesenchymal stem cells overexpressing hepatocyte growth factor improve small-for-size liver grafts regeneration. Mol. Ther. 2007; 15:1382-9.
  91. Yagi K., Kojima M., Oyagi S. et al. Application of mesenchymal stem cells to liver regenerative medicine. Yakugaku Zasshi. 2008; 128: 3-9.
  92. Киясов А.П.,. Одинцова А.Х, Гумерова А.А. и др. Транс- плантация аутогенных гемопоэтических стволовых клеток больным хроническими гепатитами. Клеточная трансплантология и тканевая инженерия 2008; 3(1): 70-5.
  93. Pulavendran S., Vignesh J., Rose C. Differential antiinflammatory and anti-fibrotic activity of transplanted mesenchymal vs. hematopoietic stem cells in carbon tetrachloride-induced liver injury in mice. Int. Immunopharmacol. 2010; 10(4): 513-9.
  94. Theise N.D., Nimmakayalu M., Gardner R. et al. Liver from bone marrow in humans. Hepatology 2000; 32: 11-6.
  95. Alison M.R., Poulsom R., Jeffery R. et al. Hepatocytes from non-hepatic adult stem cells. Nature 2000; 406: 257.
  96. Kakinuma S., Tanaka Y., Chinzei R. et al. Human umbilical stem cell cord blood as a source of transplantable hepatic progenitor cells. Stem cells 2003; 21: 217-27.
  97. Wang X., Willenbring H., Akkary Y. et al. Cell fusion is the principal source of bone marrow-derived hepatocytes. Nature 2003; 422: 897-901.
  98. Korbling M., Katz R.L., Khanna A. et al. Hepatocytes and epithelial cells of donor origin in recipients of peripheral blood stem cells. N. Engl. J. Med. 2002; 346(10): 738-46.
  99. Zhang Z.X., Guan L.X., Zhang K. et al. A combined procedure to deliver autologous mesenchymal stromal cells to patients with traumatic brain injury. Cytotherapy 2008; 10: 134-9.
  100. Xiang G.A., Zhang G.Q., Fang C.H. et al. A preliminary study of the homing capacity of allograft mesenchymal stem cells to rat liver. Di Yi Junyi Daxue Xuebao 2005; 25: 994-7.
  101. Petersen B.E. Hepatic stem cells: coming full circle. Blood cells mol. Dis. 2001; 27(3): 590-600.
  102. Fox J.M., Chamberlain G., Ashton B.A. et al. Recent advances into the understanding of mesenchymal stem cell trafficking. Br. J. Haematol. 2007; 137: 491-502.
  103. Dalakas E., Newsome P.N., Harrison D.J. et al. Hematopoietic stem cell trafficking in liver injury. FASEB 2005; 19(10): 1225-31.
  104. Avital J., Inderbitzin D., Aoki T. et al. Isolation, characterization and transplantation of bone marrow-derived hepatocyte stem cells. Bioch., Biophys. Res. Communic. 2001; 288: 156-64.
  105. Fiegel H.C., Lioznov M.V. et al. Liver-specific gene expression in cultured human hematopoietic stem cells. Stem cells 2003; 21(1): 98-104.
  106. Zhao Y., Glesne D., Huberman E. A human peripheral blood monocyte-derived subset acts as pluripotent stem cells. PNAS USA 2003; 100: 2426-31.
  107. Jiang Y., Jahagirdar B.N., Reinhardt R.L. et al. Pluripotency of mesenchimal stem cells derived from adult marrow. Nature 2002; 418: 41-9.
  108. Lee K.D., Kuo T.K., Whang-Peng Y et al. In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology 2004; 40: 1256-9.
  109. Lange C., Bassler P., Lioznov M.V. Liver-specific gene expression in mesenchymal stem cells is induced by liver cells. World J. Gastroenterol. 2005; 11: 4497-504.
  110. Ong S.Y., Dai H., Leong K.W. Inducing hepatic differentiation of human mesenchymal stem cells in pellet culture. Biomaterials 2006; 27: 4087-97.
  111. Lagasse E., Connors H., Al-Dhalimy M. et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat. Med. 2000; 6: 1229-34.
  112. Miyazaki M., Akiyama I., Sacaguchi M. et al. Improved conditions to induce hepatocytes from rat bone marrow cells in culture. Biochem. Biophys. Res. Commun. 2002; 298: 24-30.
  113. Fontanellas A., Mazurier F., Landry M. et al. Reversion of hepatobilary alterations by bone marrow transplantation in a murine model of erythropoietic protoporphyria. Hepatology 2000; 32: 73-81.
  114. Chamberlain J., Yamagami T., Colletti E. et al. Efficient generation of human hepatocytes by the intrahepatic delivery of clonal human mesenchymal stem cells in fetal sheep. Hepatology 2007; 46: 1935-45.
  115. Camargo F.D., Finegold M., Goodell M.A. Hematopoietic myelomonocytic cells are the major source of hepatocyte fusion partners. J. Clin. Invest. 2004; 113: 1266-70.
  116. Willenbring H., Bailey A.S., Foster M. et al., Myelomonocytic cells are sufficient for therapeutic cell fusion in liver. Nat. Med. 2004; 10: 774-48.
  117. Russo F.P., Alison M.R., Bigger B.W. et al. The bone marrow functionally contributes to liver fibrosis. Gastroenterology 2006; 130: 1807-21.
  118. Fausto N., Webber E.M. Liver regeneration. 2 Role of growth factors and cytokines in hepatic regeneration. FASEB 1995; 9: 1527-36.
  119. Galun E., Axelrod J.H. The role of cytokines in liver failure and regeneration: potential new molecular therapies. Biochym. Biophys Acta. 2002; 1592: 345-58.
  120. Kinnard T., Stabile E., Burnett M.S. et al. Marrow-derived stromal cells express genes encoding a broad spectrum of arterigenic cytokines and promote in vitro and in vivo arteriogenesis though paracrine mechanisms. Circul. Res., 2004; 94: 678-82.
  121. Liu C.H., Hwang S.M. Cytokine interactions in mesenchymal stem cells from cord blood. Cytokine 2005; 32: 270-9.
  122. Linker R.A., Kruse N., Israel S. et al. Leukemia inhibitory factor deficiency modulates the immune response and limits autoimmune demyelination: a new role for neutrophic cytokines in neuroinflammation. J. Immunol. 2008; 180: 2204-13.
  123. Chen X., Li Y., Wang L. et al.. Ischemic rat brain extracts induce human marrow stromal cell growth factor production. Neuropathol. 2002; 22: 275-9.
  124. Ren X., Colletti L. et al. Stem cell factor restores hepatocyte proliferation in IL-6 knockout mice following 70% hepatectomy. J. Clin. Invest. 2003; 112: 1407-18.
  125. Langer D.A., Das A., Semela D. et al. Nitricoxide promotes caspase-independent hepatic stellate cell apoptosis through the generation of reactive oxygen species. Hepatology 2008; 47: 1983-93
  126. Marubashi S., Sakon M., Nagano H. et al. Effect of portal hemodynamics on liver regeneration studied in a novel portohepatic shunt rat model. Surgery 2004; 136: 1028-37.
  127. Fausto N., Riehle K.J. Mechanisms of liver regeneration and their clinical implications. J. Hepatobiliary Pancreat. Surg. 2005; 12: 181-9.
  128. Ren G., Zhang L., Zhao X. et al.. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2008; 2: 141-50.
  129. Mohamadnejad M., Namiri M., Bagheri M. et al. Phase 1 human trial of autologous bone marrow-hematopoietic stem cell transplantation in patients with decompensated cirrhosis. World J.Gastroenterol. 2007; 13: 3359-63.
  130. Yagi H., Soto-Gutierrez A., Navarro-Alvarez N. et al. Reactive bone marrow stromal cells attenuate systemic inflammation via sTNFR1. Mol. Ther. 2010; 18(10): 1857-64.
  131. Honczarenko M., Le Y., Swierkowski M. et al. Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells, 2006, 24, 1030-1041.
  132. Lee M.J., Jung J., Na K.H. et al. Anti-fibrotic effect of chorionic plate-derived mesenchymal stem cells isolated from human placenta in a rat model of CCl(4)-injured liver: potential application to the treatment of hepatic diseases. J. Cell Biochem. 2010; 111(6): 1453-63.
  133. Gasbarrini A., Rapaccini G.L., Rutella S et al. Rescue therapy by portal infusion of autologous stem cells in a case of drug-induced hepatitis. Dig. Liver Dis. 2007; 39: 878-82.
  134. Knoefel W.T., Klein M. et al. Portal application of autologous CD133+ bone marrow cells to the liver: a novel concept to support hepatic regeneration. Stem Cells 2005; 23: 463-70.
  135. Kallis Y.N., Alison M.R., Forbes S.J. Bone marrow stem cells and liver disease. Gut 2007; 56: 716-24.
  136. Mohamadnejad M., Alimoghaddam K., Mohyeddin-Bonab M. et al. Phase 1 trial of autologous bone marrow mesenchymal stem cell transplantation in patients with decompensated liver cirrhosis. Arch. Iran Med. 2007; 10: 459-66.
  137. Carvalho A.B., Quintannilha L.F., Dias et al. Bone marrow multipotent mesenchymal stem cells do not reduce fibrosis or improve function in a rat model of severe chronic liver injury. Stem Cells 2008; 26: 1307-14.
  138. Peng L., Li H., Gu L. et al. Comparison of biological characteristics of marrow mesenchymal stem cells in hepatitis B patients and normal adults. World J. Gastroenterol. 2007; 13:1743-6.
  139. Fox I.J., Strom S.C. To be or not to be: generation of hepatocytes from cells outside the liver. Gastroenterology 2008; 134: 878-81.
  140. Zhang Z.X., Guan L.X., Zhang K. et al. Cytogenetic analysis of human bone marrow-derived mesenchymal stem cells passaged in vitro. Cell Biol. Int. 2007; 31: 645-8.
  141. Dugast A., Vanhove B. Immune regulation by non-lymphoid cells in transplantation. Clin. Exp. Immunol. 2009; 156(1): 25-34.
  142. Aziz M.T., Atta H.M., Mahfouz S. et al. Therapeutic potential of bone marrow-derived mesenchymal stem cells on experimental liver fibrosis. Clin. Biochem. 2007; 40: 893-9.
  143. Zhao D.C., Lei J.X., Chen R. et al. Bone marrow-derived mesenchymal stem cells protect against experimental liver fibrosis in rat. World J. Gastroentrol. 2005; 14: 3431-40
  144. Fang B., Shi M., Liao L. et al. Systemic infusion of FLK1+ mesenchymal stem cells ameliorate carbon tetrachloride-induced liver fibrosis in mice. Transplant. 2004; 78: 83-8.
  145. Murphy F.R., Issa R., Zhou X. et al. Inhibition of apoptosis of activated hepatic stellate cells by tissue inhibitor of metalloproteinase-1 is mediated via effects on matrix metalloproteinase inhibition. J. Biol. Chem. 2002; 277: 11069-76.
  146. Higashiyama R., Inagaki Y., Hong Y.Y. et al. Bone marrowderived cells express matrix metalloproteinases and contribute to regression of liver fibrosis in mice. Hepatology 2007; 45: 213-22.
  147. Bonzo L.V., Ferrero I., Cravanzola C. et al. Human mesenchymal stem cells as a two-edged sword in hepatic regenerative medicine: engraftment and hepatocyte differentiation versus profibrogenic potential. Gut 2008; 57: 223-31.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eco-Vector, 2011



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 
##common.cookie##