Phenotype and functional properties of adipose derived MMSC after interaction with cord blood mononuclear cells

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

It is well known, that ex vivo expansion of hematopoietic stem cells is more effective when the culture conditions mimic their in vivo microenvironment. Multipotent mesenchymal stromal cells (MMSC) are widely used in such systems due to their ability to support hematopoiesis. In addition, the result of MMSC-hematopoietic cells' interaction can be affected by O 2 concentration, which is shown to modify the number of MMSC characteristics. The feedback effects of hematopoietic cells on MMSC during their interactions are less investigated. We studied the effects of cord blood mononuclear cells (MNC] and MMSC interaction on the later cells morphofunctional characteristics during 72 h coculture at 20% or 5% O 2. The dynamics of adhesion was estimated with CCD-camera equipped microscopy, the effects of the interaction with MNC on MMSC viability and CD54, CD44, CD90 expression were detected by flow cytometry. After interaction with MNC, MMSC displayed increased CD54 and in some cases - CD44 expression. The share of CD90+-MMSCs and their viability remained high during coculture with MNC at both O 2 levels. The adhesion of MNC was somewhat faster in 20% O 2. Thus, regardless of O 2 concentration coculture of allogenic MMSCs and MNC inc 2reased the expression of MMSC adhesion molecules involved in formation of specialized cell-to-cell contacts that provided effective adhesion of MNC. MMSC did not provoke allogenic MNC cytotoxic activity that is of particular importance in the case of potential therapeutic application of MMSC.

About the authors

P. I Bobyleva

Institute of Biomedical Problems of the RAS, Moscow

I. V Andrianova

Institute of Biomedical Problems of the RAS, Moscow

E. V Maslova

Institute of Biomedical Problems of the RAS, Moscow

E. R Andreeva

Institute of Biomedical Problems of the RAS, Moscow

BSh. Sh Gogiya

Institute of Biomedical Problems of the RAS, Moscow

L. B Buravkova

Institute of Biomedical Problems of the RAS, Moscow

References

  1. Wagner W., Saffrich R., Ho A.D. The Stromal Activity of Mesenchymal Stromal Cells. Transfus. Med. Hemother. 2008; 35(3): 185-93.
  2. Hofmeister C.C., Zhang J., Knight K.L. et al. Ex vivo expansion of umbilical cord blood stem cells for transplantation: growing knowledge from the hematopoietic niche. Bone Marrow Transplant. 2007; 39(1): 11-23.
  3. Majumdar M.K., Keane-Moore M., Buyaner D. et al. Characterization and functionality of cell surface molecules on human mesenchymal stem cells. J Biomed. Sci. 2003; 10(2): 228-41.
  4. Goodison S., Urquidi V., Tarin D. CD44 cell adhesion molecules. Mol. Pathol. 1999; 52(4): 189-96.
  5. Ponta H., Sherman L., Herrlich P.A. CD44: from adhesion molecules to signalling regulators. Nat. Rev. Mol. Cell Biol. 2003; 4(1): 33-45.
  6. Miyake K., Medina K.L., Hayashi S. et al. Monoclonal antibodies to Pgp-1/CD44 block lympho-hemopoiesis in long-term bone marrow cultures. J Exp. Med. 1990; 171(2): 477-88.
  7. Walenda T., Bork S., Horn P. et al. Co-culture with mesenchymal stromal cells increases proliferation and maintenance of haematopoietic progenitor cells. J Cell Mol. Med. 2010; 14(1-2): 337-50.
  8. Alakel N., Jing D., Muller K. et al. Direct contact with mesenchymal stromal cells affects migratory behavior and gene expression profile of CD133+ hematopoietic stem cells during ex vivo expansion. Exp. Hematol. 2009; 37(4): 504-13.
  9. Jing D., Fonseca A.-V., Alakel N. et al. Hematopoietic stem cells in co-culture with mesenchymal stromal cells - modeling the niche compartments in vitro. Haematologica 2010; 95(4): 542-50.
  10. Jing D., Wobus M., Poitz D.M. et al. Oxygen tension plays a critical role in the hematopoietic microenvironment in vitro. Haematologica 2012; 97(3): 331-9.
  11. Буравкова Л.Б., Гринаковская О.С., Андреева Е.Р. и др. Характеристика мезенхимальных стромальных клеток из липоаспира-та человека, культивируемых при пониженном содержании кислорода. Цитология 2009; 51(1): 5-11.
  12. Рылова Ю.В., Андреева Е.Р., Буравкова Л.Б. Пролиферация и метаболический статус мезенхимальных стромальных клеток из жировой ткани при различном содержании кислорода в среде культивирования. Авиакосмическая и экологическая медицина 2010; 44(5): 38-41
  13. Гринаковская О.С., Андреева Е.Р., Буравкова Л.Б. и др. Пониженное содержание О2 замедляет коммитирование культивируемых мезенхимальных стромальных клеток-предшественников из жировой ткани в ответ на остеогенные стимулы. Бюллетень экспериментальной биологии и медицины 2009; 147(6): 704-7.
  14. Буравкова Л.Б., Андреева Е.Р., Григорьев А.И. Роль кислорода как физиологического фактора микроокружения в проявлении функциональных свойств мультипотентных мезенхимальных стромальных клеток человека. Физиология человека 2012; 38(4): 1-10.
  15. Koller M.R., Bender J.G., Papoutsakis E.T. et al. Effects of synergistic cytokine combinations, low oxygen, and irradiated stroma on the expansion of human cord blood progenitors. Blood 1992; 80(2): 403-11.
  16. Hammoud M., Vlaski M., Duchez P. et al. Combination of low O(2) concentration and mesenchymal stromal cells during culture of cord blood CD34( + ) cells improves the maintenance and proliferative capacity of hematopoietic stem cells. J Cell Physiol. 2012; 227(6): 2750-8.
  17. Маслова Е.В., Андреева Е.Р., Андрианова И.В. и др. Обогащение мононуклеаров пуповинной крови гемопоэтическими клетка-ми-предшественниками в совместной культуре с мезенхимальными стромальными клетками жировой ткани человека. КТБМ 2013; 4: 238-43.
  18. Zuk P.A., Zhu M., Mizuno H. et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001; 7: 211-28.
  19. Rothlein R.D. A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1. J Immunology 1986; 137 (4): 1270-4.
  20. Patarroyo M., Prieto J., Rincon J. et al. Leukocyte-cell adhesion: a molecular process fundamental in leukocyte physiology. Immunol. Rev. 1990; 114: 67-108.
  21. Yang L., Froio R.M., Sciuto T.E. et al. ICAM-1 regulates neutrophil adhesion and transcellular migration of TNF-a-activated vascular endothelium under flow. Blood 2005; 106(2): 584-92.
  22. Teixido J., Hemler M.E., Greenberger J.S. et al. Role of p1, and p2 Integrins in the Adhesion of Human CD34hi Stem Cells to Bone Marrow Stroma. J Clin. Invest. 1992; 90(2): 358-67.
  23. Wagner W., Wein F., Roderburg C. et al. Adhesion of human hematopoietic progenitor cells to mesenchymal stromal cells involves CD44. Cells Tissues Organs 2008; 188(1-2): 160-9.
  24. Wagner W., Wein F., Seckinger A. et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp. Hematol. 2005; 33(11): 1402-16.
  25. Ghannam S., Bouffi C., Djouad F. et al. Immunosuppression by mesenchymal stem cells: mechanisms and clinical applications. Stem Cell Res. Ther. 2010; 1(1): 2.
  26. Gebler A., Zabel O., Seliger B. The immunomodulatory capacity of mesenchymal stem cells. Trends Mol. Med. 2012; 18(2): 128-34.
  27. Marigo I., Dazzi F. The immunomodulatory properties of mesenchymal stem cells. Semin. Immunopathol. 2011; 33(6): 593-602.
  28. Горностаева А.Н., Андреева Е.Р., Андрианова И.В. и др. Оценка иммуносупрессивных эффектов мультипотентных мезенхимальных стромальных клеток при разном содержании О2 в среде культивирования. Клеточные технологии в биологии и медицине 2011; 2: 92-6.
  29. Le Blanc K., Tammik C., Rosendahl K. et al. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp. Hematol. 2003; 31(10): 890-6.
  30. Abumaree M., Al Jumah M., Pace R.A. et al. Immunosuppressive properties of mesenchymal stem cells. Stem Cell Rev. 2012; 8(2): 375-92.
  31. Risdon G., Gaddy J., Stehman F.B. et al. Proliferative and cytotoxic responses of human cord blood T lymphocytes following allogeneic stimulation. Cell Immunol. 1994; 154(1): 14-24.
  32. Gaddy J., Risdon G., Broxmeyer H.E. Cord blood natural killer cells are functionally and phenotypically immature but readily respond to interleukin-2 and interleukin-12. J Interferon Cytokine Res. 1995; 15(6): 527-36.
  33. Rege T.A., Hagood J.S. Thy-1 as a regulator of cell-cell and cell-matrix interactions in axon regeneration, apoptosis, adhesion, migration, cancer, and fibrosis. FASEB J 2006; 20(8): 1045-54.
  34. Ren G., Zhao X., Zhang L. et al. Inflammatory cytokine-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression. J Immunol. 2010; 184(5): 2321-8.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2013 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies