Prospects for the use of pluripotent stem cells derived blood components: erythropoiesis

Cover Page

Cite item


We review the problem of producing erythroid cells from human pluripotent stem cells. Pluripotent stem cells (embryonic stem cells, and induced pluripotent stem cells) are capable of self-renewal and differentiation into all cell types of an organism, including blood cells. Since a worldwide problem of blood donation shortage is very serious, the development of technologies to produce blood from pluripotent cells is a very modern and necessary task, which is the subject of investigations of many laboratories around the world.

Full Text

Restricted Access

About the authors

E. S Philonenko

Vavilov Institute of General Genetics of RAS, Moscow

M. A Lagarkova

Vavilov Institute of General Genetics of RAS, Moscow

S. L Kiselev

Vavilov Institute of General Genetics of RAS, Moscow


  1. Ballen K.K., Koreth J., Chen Y.B. et al. Selection of optimal alternative graft source: mismatched unrelated donor, umbilical cord blood, or haploidentical transplant. Blood 2012; 119(9): 1972-80.
  2. Korbling M., Freireich E.J. Twenty-five years of peripheral blood stem cell transplantation. Blood. 2011; 17(24): 6411-6.
  3. Moore M.A., Metcalf D. Ontogeny of the haemopoietic system: yolk sac origin of in vivo and in vitro colony forming cells in the developing mouse embryo. Br. J. Haematol. 1970; 18: 279-96.
  4. Palis J., Yoder M.C. Yolk-sac hematopoiesis: the first blood cells of mouse and man. Exp. Hematol. 2001; 29: 927-36.
  5. Galloway J.L., Zon L.I. Ontogeny of hematopoiesis: examining the emergence of hematopoietic cells. 2003; 53: 139-58.
  6. Palis J., Malik J., McGrath K.E. et al. Primitive erythropoiesis in the mammalian embryo. Int. J. Dev. Biol. 2010; 54: 1011-8.
  7. Medvinsky A.L., Samoylina N.L., Muller A.M. et al. An early preliver intraembryonic source of CFU-S in the developing mouse. Nature 1993; 364: 64-7.
  8. Tavian M., Hallais M.F., Peault B. Emergence of intraembryonic hematopoietic precursors in the pre-liver human embryo. Development 1999; 126: 793-803.
  9. Bradley T.R., Metcalf D. The growth of mouse bone marrow cells in vitro. Aust. J. Exp. Biol. Med. Sci. 1966; 44: 287-99.
  10. Dexter T.M., Allen T.D., Lajtha L.G. Conditions controlling the proliferation of haemopoietic stem cells in vitro. J. Cell Physiol. 1977; 91(3): 335-44.
  11. Sutherland H.J., Lansdorp P.M., Henkelman D.H. et al. Functional characterization of individual human hematopoietic stem cells cultured at limiting dilution on supportive marrow stromal layers. PNAS USA 1990; 87(9): 3584-8.
  12. Kobari L., Pflumio F., Giarratana M. et al. In vitro and in vivo evidence for the long-term multilineage (myeloid, B, NK, and T) reconstitution capacity of ex vivo expanded human CD34( + ) cord blood cells. Exp. Hematol. 2000; 28(12): 1470-80.
  13. Buhring H.J., Muller T., Herbst R. et al. The adhesion molecule E-cadherin and a surface antigen recognized by the antibody 9C4 are selectively expressed on erythroid cells of defined maturational stages. Leukemia 1996; 10: 106-16.
  14. Cantor A.B., Orkin S.H. Transcriptional regulation of erythropoiesis: an affair involving multiple partners. Oncogene 2002; 21: 3368-76.
  15. Kennedy M., D'souza S.L., Lynch-Kattman M. et al. Development of the hemangioblast defines the onset of hematopoiesis in human ES cell differentiation cultures. Blood 2007; 7: 2679-87.
  16. Nakano T., Kodama H., Honjo T. In vitro development of primitive and definitive erythrocytes from different precursors. Science 1996; 272: 722-4.
  17. Brotherton T.W., Chui D.H., Gauldie J. et al. Hemoglobin ontogeny during normal mouse fetal development. PNAS USA 1979; 76: 2853-7.
  18. Barker J.E. Development of the mouse hematopoietic system, I: types of hemoglobin produced in embryonic yolk sac and liver. Dev. Biol. 1968; 18: 14-29.
  19. Peschle C., Migliaccio A.R., Migliaccio G. et al. Embryonic-fetal Hb switch in humans: studies on erythroid bursts generated by embryonic progenitors from yolk sac and liver. PNAS USA 1984; 81: 2416-20.
  20. Peschle C., Mavilio F., Care A. et al. Haemoglobin switching in human embryos: asynchrony of zeta-alpha and epsilon-gamma-globin switches in primitive and definite erythropoietic lineage. Nature 1985; 313: 235-8.
  21. Kaufman D.S., Hanson E.T., Lewis R.L. et al. Hematopoietic colony-forming cells derived from human embryonic stem cells. PNAS USA 2001; 98: 10716-21.
  22. Keller G., Kennedy M., Papayannopoulou T. et al. Hematopoietic commitment during embryonic stem cell differentiation in culture. Mol. Cell Biol. 1993; 13(1): 473-86.
  23. Keller G.M. In vitro differentiation of embryonic stem cells. Curr. Opin. Cell Biol. 1995; 7(6): 862-9.
  24. Nakano T., Kodama H., Honjo T. Generation of lymphohematopoietic cells from embryonic stem cells in culture. Science 1994; 265(5175): 1098-101.
  25. Palacios R., Golunski E., Samaridis J. In vitro generation of hematopoietic stem cells from an embryonic stem cell line. PNAS USA 1995; 92(16): 7530-4.
  26. Ogawa M., Kizumoto M., Nishikawa S. et al. Expression of alpha4-integrin defines the earliest precursor of hematopoietic cell lineage diverged from endothelial cells. Blood 1999; 93(4): 1168-77.
  27. Wang L., Li L., Shojaei F. et al. Endothelial and hematopoietic cell fate of human embryonic stem cells originates from primitive endothelium with hemangioblastic properties. Immunity 2004; 20: 31-41.
  28. Zambidis E.T., Peault B., Park T.S. et al. Hematopoietic differentiation of human embryonic stem cells progresses through sequential hemato-endothelial, primitive, and definitive stages resembling human yolk sac development. Blood 2005; 107: 860-70.
  29. Nishikawa S.I., Nishikawa S., Hirashima M. et al. Progressive lineage analysis by cell sorting and culture identifies FLK1+VE-cadherin + cells at a diverging point of endothelial and hemopoietic lineages. Development 1998; 125: 1747-57.
  30. Choi K., Kennedy M., Kazarov A. et al. A common precursor for hematopoietic and endothelial cells. Development 1998; 125: 725-32.
  31. Cho S.K., Bourdeau A., Letarte M. et al. Expression and function of CD105 during the onset of hematopoiesis from Flk1( + ) precursors. Blood 2001; 98: 3635-42.
  32. Chung Y.S., Zhang W.J., Arentson E. et al. Lineage analysis of the hemangioblast as defined by FLK1 and SCL expression. Development 2002; 129: 5511-20.
  33. Boggs D.R., Saxe D.F., Boggs S.S. Aging and hematopoiesis. II. The ability of bone marrow cells from young and aged mice to cure and maintain cure in W/Wv. Transplantation 1984; 37: 300-6.
  34. Baum C.M., Weissman I.L., Tsukamoto A.S. et al. Isolation of a candidate human hematopoietic stem-cell population. PNAS USA 1992; 89(7): 2804-8.
  35. Morrison S.J., Uchida N., Weissman I.L. The biology of hematopoietic stem cells. Annu. Rev. Cell Dev. Biol. 1995; 11: 35-71.
  36. Goodell M.A., Rosenzweig M., Kim H. et al. Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat. Med. 1997; 3(12): 1337-45.
  37. Bhatia M., Bonnet D., Murdoch B. et al. A newly discovered class of human hematopoietic cells with SCID-repopulating activity. Nat. Med. 1998; 4(9): 1038-45.
  38. Nakamura Y., Ando K., Chargui J. et al. Ex vivo generation of CD34( + ) cells from CD34(-) hematopoietic cells. Blood 1999; 94(12): 4053-9.
  39. Sato T., Laver J.H., Ogawa M. Reversible expression of CD34 by murine hematopoietic stem cells. Blood 1999; 94(8): 2548-54.
  40. Vodyanik M.A., Bork J.A., Thomson J.A. et al. Human embryonic stem cell-derived CD34+ cells: efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential. Blood 2005; 105: 617-26.
  41. Qiu C., Hanson E., Olivier E. et al. Differentiation of human embryonic stem cells into hematopoietic cells by coculture with human fetal liver cells recapitulates the globin switch that occurs early in development. Exp. Hematol. 2005; 33: 1450-8.
  42. Tian X., Morris J.K., Linehan J.L. et al. Cytokine requirements differ for stroma and embryoid body-mediated hematopoiesis from human embryonic stem cells. Exp. Hematol. 2004; 32: 1000-9.
  43. Tian X., Woll P.S., Morris J.K. et al. Hematopoietic engraftment of human embryonic stem cellderived cells is regulated by recipient innate immunity. Stem Cells. 2006; 24: 1370-80.
  44. Woll P.S., Martin C.H., Miller J.S. et al. Human embryonic stem cell-derived NK cells acquire functional receptors and cytolytic activity. J. Immunol. 2005; 175: 5095-103.
  45. Slukvin I.I., Vodyanik M.A., Thomson J.A. et al. Directed differentiation of human embryonic stem cells into functional dendritic cells through the myeloid pathway. J. Immunol. 2006; 176: 2924-32.
  46. Narayan A.D., Chase J.L., Lewis R.L. et al. Human embryonic stem cell-derived hematopoietic cells are capable of engrafting primary as well as secondary fetal sheep recipients. Blood 2005; 107: 2180-3.
  47. Chadwick K., Wang L., Li L. et al. Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells. Blood 2003; 102: 906-15.
  48. Cerdan C., Rouleau A., Bhatia M. VEGF-A165 augments erythropoietic development from human embryonic stem cells. Blood 2004; 103: 2504-12.
  49. Zhan X., Dravid G., Ye Z. et al. Functional antigen-presenting leucocytes derived from human embryonic stem cells in vitro. Lancet 2004; 364: 163-71.
  50. Ng E.S., Davis R.P., Azzola L. et al. Forced aggregation of defined numbers of human embryonic stem cells into embryoid bodies fosters robust, reproducible hematopoietic differentiation. Blood 2005; 106: 1601-3.
  51. Cameron C.M., Hu W.S., Kaufman D.S. Improved development of human embryonic stem cell-derived embryoid bodies by stirred vessel cultivation. Biotechnol Bioeng. 2006; 94: 938-48.
  52. Bowles K.M., Vallier L., Smith J.R. et al. HOXB4 overexpression promotes hematopoietic development by human embryonic stem cells. Stem Cells 2006; 24: 1359-69.
  53. Wang L., Menendez P., Shojaei F. et al. Generation of hematopoietic repopulating cells from human embryonic stem cells independent of ectopic HOXB4 expression. J. Exp. Med. 2005; 201: 1603-14.
  54. Lu S.J., Feng Q., Park J.S. et al. Biologic properties and enucleation of red blood cells from human embryonic stem cells. Blood 2008; 112(12): 4475-84.
  55. Itskovitz-Eldor J., Schuldiner M., Karsenti D. et al. Differentiation of human embryonic stem cells into embryoid bodies comprising the three embryonic germ layers. Mol. Med. 2000; 6: 88-95.
  56. Kehat I., Kenyagin-Karsenti D., Snir M. et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest. 2001; 108: 407-14.
  57. Assady S., Maor G., Amit M., et al. Insulin production by human embryonic stem cells. Diabetes 2001; 50: 1691-7.
  58. Levenberg S., Golub J.S., Amit M. et al. Endothelial cells derived from human embryonic stem cells. PNAS USA 2002; 99: 4391-6.
  59. Murdoch B., Gallacher L., Chadwick K. et al. Human embryonic-derived hematopoietic repopulating cells require distinct factors to sustain in vivo repopulating function. Exp. Hematol. 2002; 30: 598605.
  60. Bhatia M., Bonnet D., Kapp U. et al. Quantitative analysis reveals expansion of human hematopoietic repopulating cells after short-term ex vivo culture. J. Exp. Med. 1997; 186: 619-24.
  61. Bhardwaj G., Murdoch B., Wu D. et al. Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat. Immunol. 2001; 2: 172-80.
  62. Bhatia M., Bonnet D., Wu D. et al. Bone morphogenetic proteins regulate the developmental program of human hematopoietic stem cells. J. Exp. Med. 1999; 189: 1139-48.
  63. Qiu C., Olivier E.N., Velho M. et al. Globin switches in yolk sac-like primitive and fetal-like definitive red blood cells produced from human embryonic stem cells. Blood 2008; 111: 2400-8.
  64. Kobari L., Yates F., Oudrhiri N. et al. Human induced pluripotent stem cells can reach complete terminal maturation: in vivo and in vitro evidence in the erythropoietic differentiation model. Haematologica 2012; 97(12): 1795-803.
  65. Olivier E., Qiu C., Bouhassira E.E. Novel, high-yield red blood cell production methods from CD34-positive cells derived from human embryonic stem, yolk sac, fetal liver, cord blood, and peripheral blood. Stem Cells Transl. Med. 2012; 1(8): 604-14.
  66. Wineman, J., Moore K., Lemischka I. et al. Functional heterogeneity of the hematopoietic microenvironment: rare stromal elements maintain long-term repopulating stem cells. Blood 1996; 87(10): 4082-90
  67. Lu L.S., Wang S.J., Auerbach R. In vitro and in vivo differentiation into B cells, T cells, and myeloid cells of primitive yolk sac hematopoietic precursor cells expanded > 100-fold by coculture with a clonal yolk sac endothelial cell line. PNAS USA 1996; 93(25): 14782-7.
  68. Gaur M., Kamata T., Wang S. et al. Megakaryocytes derived from human embryonic stem cells: a genetically tractable system to study megakaryocytopoiesis and integrin function. J. Thromb. Haemost. 2006; 4: 436-42.
  69. Takayama N., Nishikii H., Usui J. et al. Generation of functional platelets from human embryonic stem cells in vitro via ES-sacs, VEGF-promoted structures that concentrate hematopoietic progenitors. Blood 2008; 111: 5298-306.
  70. Timmermans F., Velghe I., Vanwalleghem L. et al. Generation of T cells from human embryonic stem cell-derived hematopoietic zones. J. Immunol. 2009; 182: 6879-88.
  71. Xu M.J., Tsuji K., Ueda T. et al. Stimulation of mouse and human primitive hematopoiesis by murine embryonic aorta-gonad-mesonephros-derived stromal cell lines. Blood 1998; 92: 2032-40.
  72. Ma F., Wang D., Hanada S. et al. Novel method for efficient production of multipotential hematopoietic progenitors from human embryonic stem cells. Int. J. Hematol. 2007; 85: 371-9.
  73. Ma F., Ebihara Y., Umeda K. et al. Generation of functional erythrocytes from human embryonic stem cell-derived definitive hematopoiesis. PNAS USA 2008; 105: 13087-92.
  74. Ma F., Gu Y., Nishihama N. et al. Differentiation of human embryonic and induced pluripotent stem cells in coculture with murine stromal cells. In: Marton P, Ye K, Jin S, editors. Human embryonic and induced pluripotent stem cells lineage-specific differentiation protocols. New York: Humana Press; 2011. p. 321-35.
  75. Vodyanik M.A., Thomson J.A., Slukvin I.I. Leukosialin (CD43) defines hematopoietic progenitors in human embryonic stem cell differentiation cultures. Blood 2006; 108(6): 2095-105.
  76. Choi K.D., Vodyanik M.A., Slukvin I.I. Generation of mature human myelomonocytic cells through expansion and differentiation of pluripotent stem cell-derived lin-CD34+CD43+CD45+ progenitors. J. Clin. Invest. 2009; 119: 2818-29
  77. Olivier E.N., Qiu C., Velho M. et al. Largescale production of embryonic red blood cells from human embryonic stem cells. Exp. Hematol. 2006; 34: 1635-42.
  78. Chang K.H., Nelson A.M., Cao H. et al. Definitive-like erythroid cells derived from human embryonic stem cells coexpress high levels of embryonic and fetal globins with little or no adult globin. Blood 2006; 108(5): 1515-23.
  79. Chang C.J., Mitra K., Koya M. et al. Production of embryonic and fetal-like red blood cells from human induced pluripotent stem cells. PLoS One 2011; 6: e25761.
  80. Dias J., Gumenyuk M., Kang H. et al. Generation of red blood cells from human induced pluripotent stem cells. Stem Cells Dev. 2011; 20: 1639-47.
  81. Lapillonne H., Kobari L., Mazurier C. et al. Red blood cell generation from human induced pluripotent stem cells: perspectives for transfusion medicine. Haematologica 2010; 95(10): 1651-9.
  82. Chang K.H., Huang A., Hirata R.K. et al. Globin phenotype of erythroid cells derived from human induced pluripotent stem cells. Blood 2010; 115(12): 2553-4.
  83. Sakamoto H., Tsuji-Tamura K., Ogawa M. Hematopoiesis from pluripotent stem cell lines. Int. J. Hematol. 2010; 91: 384-91.
  84. Neildez-Nguyen T.M., Wajcman H., Marden M.C. et al. Human erythroid cells produced ex vivo at large scale differentiate into red blood cells in vivo. Nat. Biotechnol. 2002; 20(5): 467-72.
  85. Hayakawa J., Hsieh M.M., Anderson D.E. et al. The assessment of human erythroid output in NOD/SCID mice reconstituted with human hematopoietic stem cells. Cell Transplant. 2010; 19(11): 1465-73.
  86. Choi K.D., Yu J., Smuga-Otto K. et al. Hematopoietic and endothelial differentiation of human induced pluripotent stem cells. Stem Cells 2009; 27(3): 559-67.
  87. Feng Q., Lu S.J., Klimanskaya I. et al. Hemangioblastic derivatives from human induced pluripotent stem cells exhibit limited expansion and early senescence. Stem Cells 2010; 28(4): 704-12.
  88. Shutova M.V., Bogomazova A.N., Lagarkova M.A., et al. Generation and characterization of human induced pluripotent stem cells. Acta Naturae 2009; 1(2): 91-2.
  89. Lagarkova M.A., Shutova M.V., Bogomazova A.N. et al. Induction of pluripotency in human endothelial cells resets epigenetic profile on genome scale. Cell Cycle 2010; 9(5): 937-46.
  90. Hanna J., Wernig M., Markoulaki S. et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 2007; 5858: 1920-23.
  91. Sebastiano V., Maeder M.L., Angstman J.F. et al. In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases. Stem Cells 2011; 29(11): 1717-26.
  92. Olivier E., Qiu C., Bouhassira E.E. Novel, high-yield red blood cell production methods from CD34-positive cells derived from human embryonic stem, yolk sac, fetal liver, cord blood, and peripheral blood. Stem Cells Transl. Med. 2012; 1(8): 604-14.
  93. Davis R.L., Weintraub H., Lassar A.B. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 1987; 51: 987-1000.
  94. Xie H., Ye M., Feng R. et al. Stepwise reprogramming of B cells into macrophages. Cell 2004; 117: 663-76.
  95. Zhou Q., Brown J., Kanarek A. et al. In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 2008; 455: 627-32.
  96. Vierbuchen T., Ostermeier A., Pang Z.P. et al. Direct conversion of fibroblasts to functional neurons by defined factors. Nature 2010; 463: 1035-41.
  97. Sandler V.M., Lailler N., Bouhassira E.E. Reprogramming of embryonic human fibroblasts into fetal hematopoietic progenitors by fusion with human fetal liver CD34+ cells. PLoS One 2011; 6(4): e18265.
  98. Szabo E., Rampalli S., Risueno R.M. et al. Direct conversion of human fibroblasts to multilineage blood progenitors. Nature 2010; 468(7323): 521-6.
  99. Philonenko E.S., Shutova M.V., Chestkov I.V. et al. Current progress and potential practical application for human pluripotent stem cells. Int. Rev. Cell Mol. Biol. 2011; 292: 153-96.
  100. Bhutani N., Brady J.J., Damian M. et al. Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature 2010; 463: 1042-7.
  101. Yamanaka S., Blau H.M. Nuclear reprogramming to a pluripotent state by three approaches. Nature 2010; 465: 704-12.
  102. Johansson C.B., Youssef S., Koleckar K. et al. Extensive fusion of haematopoietic cells with Purkinje neurons in response to chronic inflammation. Nat. Cell Biol. 2008; 10: 575-83.

Copyright (c) 2013 PJSC Human Stem Cells Institute

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС 77 - 57156 от 11.03.2014.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies