Role of VEGF-A165 receptors in angiogenesis

Cover Page

Cite item


We present an overview of current literature data on the different roles of key proangiogenic factor VEGF-A-165' receptors in angiogenesis regulation. VEGFR2 is the major effector receptor and runs intracellular cascades that provide survival, proliferation and migration of endothelial cells, the involvement of progenitor cells, the formation and maturation of new blood vessels. VEGFR1 contrary is the main regulator of the activity of VEGF-A-165, preventing excessive angiogenic response through the mechanism of negative feedback. The article also presents data on the variability of number and ratio of VEGFR1 and VEGFR2 on the surface of different cell types, providing the fine regulation of the VEGF-A-165 pathway.

Full Text

Restricted Access

About the authors

I. V Arutyunyan

esearch Center for Obstetrics, Gynecology and Perinatology MH of RF, Moscow; Research Institute of Human Morphology of the RAMS, Moscow

E. Y Kananykhina

Research Institute of Human Morphology of the RAMS, Moscow

A. V Makarov

esearch Center for Obstetrics, Gynecology and Perinatology MH of RF, Moscow; Research Institute of Human Morphology of the RAMS, Moscow


  1. Pandya N.M., Dhalla N.S., Santani D.D. Angiogenesis--a new target for future therapy. Vascul. Pharmacol. 2006; 44(5): 265—74.
  2. Фатхудинов Т.Х., Большакова Г.Б., Комиссарова С.В. и др. Ангиогенез при трансплантации ауто- и аллогенных клеток. Бюллетень экспериментальной биологии и медицины 2010; 149(4): 442-447.
  3. Blankenberg F.G., Levashova Z., Sarkar S.K. et al. Noninvasive assessment of tumor VEGF receptors in response to treatment with pazopanib: a molecular imaging study. Transl. Oncol. 2010; 3(1): 56-64.
  4. Chung A.S., Ferrara N. Developmental and pathological angiogenesis. Annu. Rev. Cell Dev. Biol. 2011; 27: 563-84.
  5. Folkman J., Merler E., Abernathy C. et al. Isolation of a tumor factor responsible for angiogenesis. J. Exp. Med. 1971; 133(2): 275-88.
  6. Isner J.M., Vale P., Symes J. et al. Angiogenesis and cardiovascular disease. Dialogues in Cardiovascular Medicine 2001; 6(3): 145-72.
  7. Cao R., Brakenhielm E., Wahlestedt C. et al. Leptin induces vascular permeability and synergistically stimulates angiogenesis with FGF-2 and VEGF. PNAS USA 2001; 98(11): 6390-5.
  8. Carmeliet P. Angiogenesis in health and disease. Nat. Med. 2003; 9(6): 653-60.
  9. Shima D.T., Deutsch U., D'Amore P.A. Hypoxic induction of vascular endothelial growth factor (VEGF) in human epithelial cells is mediated by increases in mRNA stability. FEBS Lett. 1995; 370(3): 203-8.
  10. Stefanini M.O., Wu F.T., Mac Gabhann F. et al. A compartment model of VEGF distribution in blood, healthy and diseased tissues. BMC Syst. Biol. 2008; 2: 77.
  11. Takahashi H., Shibuya M. The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin. Sci. (Lond.). 2005; 109(3): 227-41.
  12. Takeshita S., Zheng L.P., Brogi E. et al. Therapeutic angiogenesis. A single intraarterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model. J. Clin. Invest. 1994; 93(2): 662-70.
  13. Shibuya M. Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis. J. Biochem. Mol. Biol. 2006; 39(5): 469-78.
  14. Neufeld G., Kessler O. The semaphorins: versatile regulators of tumour progression and tumour angiogenesis. Nat. Rev. Cancer 2008; 8: 632-45.
  15. Fong G.H., Rossant J., Gertsenstein M. et al. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 1995; 376: 66-70.
  16. Seetharam L., Gotoh N., Maru Y. et al. A unique signal transduction from FLT tyrosine kinase, a receptor for vascular endothelial growth factor VeGF. Oncogene 1995; 10: 135-47.
  17. Kanno S., Oda N., Abe M. et al. Roles of two VEGF receptors, Flt-1 and KDR, in the signal transduction of VEGF effects in human vascular endothelial cells. Oncogene 2000; 19(17): 2138-46.
  18. Hiratsuka S., Nakamura K., Iwai S. et al. MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2002; 2(4): 289-300.
  19. Hanania R., Sun H.S., Xu K. et al. Classically activated macrophages use stable microtubules for matrix metalloproteinase-9 (MMP-9) secretion. J. Biol. Chem. 2012; 287(11): 8468-83.
  20. Fridman R., Toth M., Chvyrkova I. et al. Cell surface association of matrix metalloproteinase-9 (gelatinase B). Cancer Metastasis Rev. 2003; 22: 153-66.
  21. Bauer A.T., Burgers H.F., Rabie T. et al. Matrix metalloproteinase-9 mediates hypoxia-induced vascular leakage in the brain via tight junction rearrangement. J. Cereb. Blood Flow Metab. 2010; 30(4): 837-48.
  22. Pepper M.S. Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscler. Thromb. Vasc. Biol. 2001; 21: 1104-17.
  23. Lee S., Jilani S.M., Nikolova G.V. et al. Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J. Cell Biol. 2005; 169(4): 681-91.
  24. Cebe Suarez S., Pieren M., Cariolato L. et al. A VEGF-A splice variant defective for heparan sulfate and neuropilin-1 binding shows attenuated signaling through VEGFR-2. Cell. Mol. Life Sci. 2006; 63(17): 2067-77.
  25. Ferrara N. Binding to the extracellular matrix and proteolytic processing: two key mechanisms regulating vascular endothelial growth factor action. Mol. Biol. Cell. 2010; 21(5): 687-90.
  26. Cornelius L.A., Nehring L.C., Harding E. et al. Matrix metalloproteinases generate angiostatin: effects on neovascularization. J. Immunol. 1998; 161(12): 6845-52.
  27. Pozzi A., Moberg P.E., Miles L.A. et al. Elevated matrix metalloprotease and angiostatin levels in integrin alpha 1 knockout mice cause reduced tumor vascularization. PNAs USA 2000; 97(5): 2202-7.
  28. Hollborn M., Stathopoulos C., Steffen A. et al. Positive feedback regulation between MMP-9 and VEGF in human RPE cells. Invest. Ophthalmol. Vis. Sci. 2007; 48(9): 4360-7.
  29. Shalaby F., Rossant J., Yamaguchi T.P. et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 1995; 376: 62-6.
  30. Gerber H.P., McMurtrey A., Kowalski J. et al. Vascular endothelial growth factor regulates endothelialcell survival through the phosphatidylinositol 3_-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J. Biol. Chem. 1998; 273: 30336-43.
  31. Fukumura D., Gohongi T., Kadambi A. et al. Proc Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Natl. Acad. Sci. USA 2001; 98(5): 2604-9.
  32. Sonveaux P., Martinive P., DeWever J. et al. Caveolin-1 expression is critical for vascular endothelial growth factor-induced ischemic hindlimb collateralization and nitric oxide-mediated angiogenesis. Circ. Res. 2004; 95(2): 154-61.
  33. Labrecque L., Royal I., Surprenant D.S. et al. Regulation of vascular endothelial growth factor receptor-2 activity by caveolin-1 and plasma membrane cholesterol. Mol. Biol. Cell. 2003; 14(1): 334-47.
  34. Navarro A., Anand-Apte B., Parat M.O. A role for caveolae in cell migration. FASEB J. 2004; 18(15): 1801-11.
  35. Bir S.C., Xiong Y., Kevil C.G. et al. Emerging role of PKA/eNOS pathway in therapeutic angiogenesis for ischaemic tissue diseases. Cardiovasc. Res. 2012; 95(1): 7-18.
  36. Lee P.C., Salyapongse A.N., Bragdon G.A. et al. Impaired wound healing and angiogenesis in eNOS-deficient mice. Am. J. Physiol. 1999; 277(4 Pt 2):H1600-8.
  37. Laufs U., Werner N., Link A. et al. Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation 2004; 109(2): 220-6.
  38. Yu J., deMuinck E.D., Zhuang Z. et al. Endothelial nitric oxide synthase is critical for ischemic remodeling, mural cell recruitment, and blood flow reserve. PNAS USA 2005; 102(31): 10999-1004.
  39. Zetterstrom R. The 1998 Nobel Prize-discovery of the role of nitric oxide as a signalling molecule. Acta. Paediatr. 2009; 98(3): 593-9.
  40. Huang P.L. eNOS, metabolic syndrome and cardiovascular disease. Trends Endocrinol. Metab. 2009; 20(6): 295-302.
  41. Kitazawa T., Semba S., Huh Y.H. et al. Nitric oxide-induced biphasic mechanism of vascular relaxation via dephosphorylation of CPI-17 and MYPT1. J. Physiol. 2009; 587 (Pt 14): 3587-603.
  42. Furchgott R.F., Zawadzki J.V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980; 288(5789): 373-6.
  43. Hattori K., Heissig B., Wu Y. et al. Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1+ stem cells from bone-marrow microenvironment. Nat. Med. 2002; 8: 841-9.
  44. Sawano A., Iwai S., Sakurai Y. et al. Flt-1, vascular endothelial growth factor receptor 1, is a novel cell surface marker for the lineage of monocyte-macrophages in humans. Blood 2001; 97: 785-91.
  45. Imoukhuede P.I., Popel A.S. Quantification and cell-to-cell variation of vascular endothelial growth factor receptors. Exp. Cell. Res. 2011; 317(7): 955-65.
  46. Imoukhuede P.I., Popel A.S. Expression of VEGF receptors on endothelial cells in mouse skeletal muscle. PLoS One 2012; 7(9): e44791.
  47. Imoukhuede P.I., Dokun A.O., Annex B.H. et al. Endothelial cell-by-cell profiling reveals temporal dynamics of VEGFR1 and VEGFR2 membrane-localization following murine hindlimb ischemia. Am J Physiol. Heart Circ. Physiol. 2013; 304(8): H1085-93.
  48. Mac Gabhann F., Popel A.S. Dimerization of VEGF receptors and implications for signal transduction: a computational study. Biophys. Chem. 2007; 128(2-3): 125-39.

Copyright (c) 2013 PJSC Human Stem Cells Institute

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС 77 - 57156 от 11.03.2014.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies