Clinical and pathological features DNMT3A, FLT3, KIT, NPM1, NRAS, TP53 and wT1 genes mutations detection in acute myeloid leukemia patients aged 15-45 years old

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The frequency of acute myeloid leukemia (AML) increases with age, respectively, the range of identified gene mutations and the pathways involved carcinogenesis can vary and affect the prognosis of treatment. The aim of the study was to estimate the frequency of mutations in DNMT3A, FLT3, KIT, NPM1, NRAS, TP53 and WT1 genes in acute myeloid leukemia (AML) patients (pts) aged 15-45 years old using direct automatic sequencing technique. Bone marrow and peripheral blood samples obtained from 36 AML pts aged 15 to 45. Distribution of the pts according to FAB-classification was as follows: AML M0 - 2, M1 - 1, M2 - 15, М3 - 2, M4 - 11, M4eo - 2, M5 - 2, blastic plasmacytoid dendritic cell neoplasm-1. Detection of mutations in ASXL1, DNMT3A, FLT3, KIT, NPM1, NRAS, TP53 and WT1 genes performed by automatic direct sequencing technique. The average frequency of functionally significant mutations in all investigated genes among the treated AML pts was 41,7 % (n=15), including 6 cases (40,0 %) with unfavorable cytogenetics, 6 cases (54,5 %) with normal karyotype, 3 cases (37,5 %) with favorable cytogenetics. These data correspond to the average frequency of point mutation in AML with normal and abnormal karyotype. Average frequency of mutations in FLT3 gene exons 12-15 and 19-21 - 21,9 %, NRAS gene exons 1-4 - 13,0 %, WT1 gene exons 6-9 - 11,1%, NPM1 gene exons 9-12 was 10,7 %, KIT gene exons 7-12 and 16-19 - 10,0 %, DNMT3A exons 18-26 - 7,1 %, TP53 gene exons 4-11 - 0,0 %. Multiple point mutations in investigated genes detected in 13.9 % AML specimens (usually KIT gene non-synonymous substitution c. 1621 А>С). Cryptic gene mutations detection using direct sequencing technique allowed to clarify the prognostic stratification of AML from groups of favorable and intermediate prognosis in 36,8 % (n=7). Thus, using of cytogenetic and additional molecular genetic research, a favorable prognosis of overall survival was established in 6 cases (16,7 %), intermediate - in 10 cases (27,8 %), adverse - in 18 cases (50,0 %), and unspecified - in 2 (5,6 %).

Full Text

Restricted Access

About the authors

A. V Vinogradov

Ural State Medical University; Sverdlovsk Regional Clinical Hospital № 1

A. V Rezaykin

Ural State Medical University

S. V Sazonov

Ural State Medical University; Institute of Medical Cell Technologies

A. G Sergeev

Ural State Medical University

References

  1. The Cancer Genome Atlas Research Network. Genomic and epig-enomic landscapes of adult de novo acute myeloid leukemia. NEJM 2013; 368: 2059-74.
  2. Ho T.C., LaMere M., Stevens B.M. et al. Evolution of acute myelogenous leukemia stem cell properties after treatment and progression. Blood 2016; 128: 1671-8.
  3. Murati A., Brecqueville M., Devillier R. et al. Myeloid malignancies: mutations, models and management. BMC Cancer 2012; 12: 304.
  4. Shlush L.I., Zandi S., Itzkovitz S. et al. Aging, clonal hematopoiesis and preleukemia: not just bad luck? Int. J. Hematol. 2015; 102: 513-22.
  5. Vardiman J.V., Thiele J., Arber D.A. et al. The 2008 revision of the WHO classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 2009; 114: 937-52.
  6. Arber D.A., Orazi A., Hasserjian R. et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016; 127: 2391-405.
  7. Metzeler K.H., Herold T., Rothenberg-Thurle M. et al. Spectrum and prognostic relevance of driver gene mutations in acute myeloid leukemia. Blood 2016; 128: 686-98.
  8. Виноградов А.В., Резайкин А.В., Салахов Д.Р. и др. Сравнительный анализ результатов типирования молекулярных повреждений гена NPM1 при острых миелоидных лейкозах с использованием прямого автоматического секвенирования и иммуногистохимического метода. Вестник Уральской медицинской академической науки 2013; 4: 124-7.
  9. Виноградов А.В., Резайкин А.В., Изотов Д.В. и др. Применение технологии прямого автоматического секвенирования для детекции мутаций генов ASXL1, DNMT3A, FLT3, KIT, NRAS, TP53 и WT1 при острых миелоидных лейкозах с неуточненным кариотипом. Вестник Уральской медицинской академической науки 2016; 4: 38-51.
  10. Виноградов А.В., Резайкин А.В., Салахов Д.Р. и др. Детекция мутаций генов DNMT3A, FLT3, KIT, KRAS, NRAS, NPM1, TP53 и WT1 при острых миелоидных лейкозах с нормальным кариотипом бластных клеток. Вестник Уральской медицинской академической науки 2016; 2: 89-101.
  11. Виноградов А.В., Резайкин А.В., Сергеев А.Г. Детекция мутаций генов FLT3, KIT, NRAS, TP53 и WT1 при острых миелоидных лейкозах с аберрантными кариотипами. Вестник Уральской медицинской академической науки 2015; 1: 77-84.
  12. Walter R.B., Othus M., Burnett A.K. et al. Significance of FAB subclassification of "acute myeloid leukemia, NOS” in the 2008 WHO classification: analysis of 5848 newly diagnosed patients. Blood 2013; 121: 2424-31.
  13. Виноградов А.В. Разработка технологии детекции мутаций генов CDKN2A/ARF, FLT3, KIT, NPM1, NRAS, TET2, TP53, WT1 при острых миелоидных лейкозах. Российский онкологический журнал 2013: 4: 34-5.
  14. Виноградов А.В., Резайкин А.В., Сергеев А.Г. Детекция точечных мутаций в гене DNMT3A при острых миелоидных лейкозах методом прямого автоматического секвенирования. Бюллетень сибирской медицины 2015; 14 (1): 18-23.
  15. Chan P.M. Differential signaling of Flt3 activating mutations in acute myeloid leukemia: a working model. Protein Cell 2011; 2: 108-15.
  16. Smith C.C., Wang Q., Chin C.S. et al. Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia. Nature 2012; 485: 260-3.
  17. Szatkowski D., Hellmann A. The overexpression of KIT proto-oncogene in acute leukemic cells is not necessarily caused by the gene mutation. Acta Haematol. 2015; 133: 116-23.
  18. Heldin C.H., Lennartsson J. Structural and functional properties of platelet-derived growth factor and stem cell factor receptors. Cold Spring Harb. Perspect. Biol. 2013; 5(8): a009100.
  19. Grossmann V., Schnittger S., Kohlmann A. et al. A novel hierarchical prognostic model of AML solely based on molecular mutations. Blood 2012; 120: 2963-72.
  20. Coombs C.C., Tallman M.S., Levine R.S. Molecular therapy for acute myeloid leukaemia. Nature Rev. Clin. Oncology 2016: 13: 305-18.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies