Histopathological changes of bone marrow in patients with autosomal recessive osteopetrosis and mutation in TCIRG1 gene



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Osteopetrosis is a group of rare hereditary diseases, the general structural manifestation of which is the excessive volume of bone tissue due to violation of osteoclastic resorption. The only way to treat this group of patients so far remains transplantation of hematopoietic stem cells, but the degree of its effectiveness largely depends on the severity of morphological changes in the hematopoietic microenvironment in the bone marrow. In this regard, a comprehensive clinical and morphological analysis, in conjunction with the results of transplantation can help in determining the prognosis of the disease depending on the genetic type of osteopetrosis. The material for the studies were biopsies and smears of bone marrow of patients with osteopetrosis, who were received at the R. Gorbacheva Memorial Research Institute for Pediatric Oncology, Hematology and Transplantation from the republics of Chuvashia and Mari El for carrying out transplantation of hematopoietic stem cells. The histological preparations were stained with hematoxylin and eosin, azur by Romanovsky and by Van Gieson. Bone marrow smears were stained by Romanovsky-Giemsa. The presence of the mutation c.807 + 5G>A in the gene TCIRG1 in patients with autosomal recessive osteopetrosis causes a complete loss of osteoclastic resorption, which is accompanied by pronounced early structural changes in the hematopoietic microenvironment already at the time of diagnosis. This is manifested by an excessive amount of lamellar bone at the same time as the almost complete obliteration of the medullar lacunae, as well as fibrosis of the bone marrow stroma. A common morphological phenomenon among this group of patients is the presence in the bone marrow of an excessive number of osteoclast differentiation cells without the formation of resorption lacunae. This causes a complete suppression of hemopoiesis, which clinically manifests cytopenia and the formation of foci of extramedullary hematopoiesis. Such pronounced structural changes in the hematopoietic microenvironment result in a high risk of primary graft failure during after transplantation of bone marrow hematopoietic stem cells, the effectiveness of which decreases as the child's age increases. Early development of pronounced structural changes in the hematopoietic microenvironment in patients with TCIRG1-mediated osteopetrosis determines the need for diagnosis and transplantation as soon as possible after birth.

Full Text

Restricted Access

About the authors

I. L Plaksa

PJSC “Human Stem Cells Institute"; Moscow City Oncology Hospital No 62

Email: i.plaksa2014@yandex.ru

E. M Charlanova

I.P. Pavlov the First Saint-Petersburg State Medical University

V. M Kravcova

I.P. Pavlov the First Saint-Petersburg State Medical University

A. S Borovkova

I.P. Pavlov the First Saint-Petersburg State Medical University

M. V Peshkov

S.M. Kirov Military Medical Academy

L. S Zubarovskaya

I.P. Pavlov the First Saint-Petersburg State Medical University

R. V Deev

PJSC “Human Stem Cells Institute"; I.P. Pavlov Ryazan State Medical University

B. V Afanasiev

I.P. Pavlov the First Saint-Petersburg State Medical University

References

  1. Гололобов В.Г., Деев Р.В. Стволовые стромальные клетки и остеобластический клеточный дифферон. Морфология 2003; 103(1): 1-19.
  2. Данилов Р.К., Боровая Т.Г., Клочков Н.Д. Экспериментально- гистологический анализ гистогенеза и регенерации тканей (некоторые итоги XX века и перспективы дальнейших исследований). Морфология 2000; 118(4): 7-16.
  3. Albers-Schönberg H.E. Röntgenbilder einer seltenen knochenerkrankung. Munch. Med. Wochenschr. 1904; 51: 365-8.
  4. Maizlin Z.V., Cooperberg P.L., Clement J.J. et al. People Behind Exclusive Eponyms of Radiologic Signs [Part I). Can. Assoc. Radiol. J. 2009; 60(4): 201-12.
  5. Segovia-Silvestre T., Neutzsky-Wulff A.V., Sorensen M.G. et al. Advances in osteoclast biology resulting from the study of osteopetrotic mutations. Human Genetics 2009; 124(6): 561-5.
  6. Coudert A.E., de Vernejoul M.C., Muraca M. et al. Osteopetrosis and its relevance for the discovery of new functions associated with the skeleton. Int. J. Endocrinol. 2015; doi: 10.1155/2015/372156.
  7. Li B., Zhang P., Feng G. Bone marrow fibrosis grade is an independent risk factor for overall survival in patients with primary myelofibrosis. Blood Cancer J. 2016; 6(12): e505.
  8. Barvencik F., Kurth I., Koehne T. et al. CLCN7 and TCIRG1 mutations differentially affect bone matrix mineralization in osteopetrotic individuals. J. Bone and Min. Res. 2014; 29(4): 982-91.
  9. Цыган Е.Н., Деев Р.В. Морфофункциональные основы остео-пороза. СПб.: ВМедА; 2005.
  10. Kuo T.T., Davis C.P. Osteopetrosis: a scanning electron microscopic study. Hum. Pathol. 1981; 12(4): 376-9.
  11. Orchard P.J., Fasth A.L., Le Rademacher J. et al. Hematopoietic stem cell transplantation for infantile osteopetrosis. Blood 2015; 126(2): 270-6.
  12. Waguespack S.G., Hui S.L., Dimeglio L.A. et al. Autosomal dominant osteopetrosis: clinical severity and natural history of 94 subjects with a chloride channel 7 gene mutation. J. Clin. Endocrinol. Met. 2007; 92: 771-8.
  13. Sobacchi C., Frattini A., Orchard P. et al. The mutational spectrum of human malignant autosomal recessive osteopetrosis. Hum. Mol. Gen. 2001; 10(17): 1767-73.
  14. Bliznetz E.A., Tverskaya S.M., Zinchenko R.A. et al. Genetic analysis of autosomal recessive osteopetrosis in Chuvashiya: the unique splice site mutation in TCIRG1 gene spread by the founder effect. Eur. J. Hum. Genet. 2009; 17(5): 664-72.
  15. Susani L., Pangrazio A., Sobacchi C. et al. TCIRG1-dependent recessive osteopetrosis: mutation analysis, functional identification of the splicing defects, and in vitro rescue by U1 snRNA. Hum. Mutat. 2004; 24(3): 225-35.
  16. Frattini A., Orchard P.J., Sobacchi C. et al. Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nature Genetics 2000; 25: 343-6.
  17. Bruder E., Stallmach T., Peier K. et al. Osteoclast morphology in autosomal recessive malignant osteopetrosis due to a TCIRG1 gene mutation. Pediatr. Pathol. Mol. Med. 2003; 22(1): 3-9.
  18. Mazzolari E., Forino C., Razza A. et al. A single-center experience in 20 patients with infantile malignant osteopetrosis. Am. J. Hematol. 2009; 84(8): 473-9.
  19. Merianos D., Heaton T., Flake A.W. In utero hematopoietic stem cell transplantation: progress toward clinical application. Biol. Blood Marrow Transplant. 2008; 14(7): 729-40.
  20. Johansson M., Jansson L., Ehinger M. et al. Neonatal hematopoietic stem cell transplantation cures oc/oc mice from osteopetrosis. Exp. Hematol. 2006; 34(2): 242-9.
  21. Sobacchi C., Schulz A., Coxon F.P. et al. Osteopetrosis: genetics, treatment and new insights into osteoclast function. Nat. Rev. Endocrinol. 2013; 9(9): 522-36.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies