Tissue-engineered constructions for skeletal muscle tissue repair

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


Present review covers different types of tissue engineered constructions used for substitution of muscle tissue defects. Main methods of manufacturing of decellularized muscle scaffolds, mechanisms of action and results of their application in experiments in vivo are reviewed.

Full Text

Restricted Access

About the authors

I. N Korsakov

Central Clinical Hospital with Outpatient Health Center; Central State Medical Academy

Moscow, Russia

D. P Samchuk

Central Clinical Hospital with Outpatient Health Center

Moscow, Russia

I. I Eremin

Central Clinical Hospital with Outpatient Health Center; Central State Medical Academy

Moscow, Russia

V. L Zorin

Central Clinical Hospital with Outpatient Health Center; Human Stem Cells Institute

Moscow, Russia

R. V Deev

Central Clinical Hospital with Outpatient Health Center; Human Stem Cells Institute; I.P. Pavlov Ryazan State Medical University

Moscow,Ryazan, Russia

A. A Pulin

Central Clinical Hospital with Outpatient Health Center; Central State Medical Academy

Moscow, Russia


  1. Laumonier T., Menetrey J. Muscle injuries and strategies for improving their repair. J. Exp. Orthop. 2016; 3(1): 15.
  2. Corona B.T., Rivera J.C., Owenset J.G. et al. Volumetric muscle loss leads to permanent disability following extremity trauma. J. Rehabil. Res. Dev. 2015; 52(7): 785-92.
  3. Grogan B.F., Hsu J.R. Skeletal trauma research consortium. Volumetric muscle loss. J. Am. Acad. Orthop. Surg. 2011; 19 Suppl 1: 35-7.
  4. Fan Y., Maley M., Beilharz M. et al. Rapid death of injected myoblasts in myoblast transfer therapy. Muscle Nerve 1996; 19(7): 853-60.
  5. Guerette B., Asselin D., Skuk D. et al. Control of inflammatory damage by anty-LFA-1: increase success of myoblast transfer therapy. Cell Transplant. 1996; 6(2): 101-7.
  6. Wolf M.T., Dearth C.L., Sonnenberg S.B. et al. Naturally derived and synthetic scaffolds for skeletal muscle reconstruction. Adv. Drug. Deliv. Rev. 2015; 84: 208-21.
  7. Klinge U., Klosterhalfen B., Muller M. et al. Foreign body reaction to meshes used for the repair of abdominal wall hernias. Eur. J. Surg. 1999; 165(7): 665-73.
  8. Taylor S.G., O'Dwyer P.J. Chronic groin sepsis following tension-free inguinal hernioplasty. Br. J. Surg. 1999; 86(4): 562-5.
  9. Tolino M.J., Tripoloni D.E., Ratto R. et al. Infections associated with prosthetic repairs of abdominal wall hernias: pathology, management and results. Hernia 2009; 13(6): 631-7.
  10. Sicari B.M., Rubin J.P., Dearth C.L. An acellular biologic scaffold promotes skeletal muscle formation in mice and humans with volumetric muscle loss. Sci. Transl. Med. 2014; 6(234): 234ra58.
  11. Theocharis A.D., Skandalis S.S., Gialeli C. et al. Extracellular matrix structure. Adv. Drug. Deliv. Rev. 2016; 97: 4-27
  12. Urciuolo A., Quarta M., Morbidoni V. Collagen VI regulates satellite cell self-renewal and muscle regeneration. Nat. Commun. 2013; 4: 1964.
  13. Chaturvedi V., Dye D.E., Kinnear B.F. Interactions between Skeletal muscle myoblasts and their extracellular matrix revealed by a serum free culture system. PLoS One 2015; 10(6): e0127675.
  14. Brandan E., Gutierrez J. Role of skeletal muscle proteoglycans during myogenesis. Matrix Biol. 2013; 32(6): 289-97.
  15. Crapo P.M., Gilbert T.W., Badylak S.F. An overview of tissue and whole organ decellularization processes. Biomaterials 2011; 32(12): 3233-43.
  16. Lehr E.J., Rayat G.R., Chiu B. et al. Decellularization reduces immunogenicity of sheep pulmonary artery vascular patches. J. Thorac. Cardiovasc. Surg. 2011; 141(4): 1056-62.
  17. Patel N., Solanki E., Picciani R. Strategies to recover proteins from ocular tissues for proteomics. Proteomics 2008; 8(5): 1055-70.
  18. Cox B., Emili A. Tissue subcellular fractionation and protein extraction for use in mass-spectrometry-based proteomics. Nat. Protoc. 2006; 1(4): 1872-8.
  19. Xu C.C., Chan R.W., Tirunagari N. A biodegradable, acellular xenogeneic scaffold for regeneration of the vocal fold lamina propria. Tissue Eng. 2007; 13(3): 551-66.
  20. Dong X., Wei X., Yi W. et al. RGD-modified acellular bovine pericardium as a bioprosthetic scaffold for tissue engineering. J. Mater. Sci. Mater. Med. 2009; 20(11): 2327-36.
  21. Reing J.E., Brown B.N., Daly K.A. The effects of processing methods upon mechanical and biologic properties of porcine dermal extracellular matrix scaffolds. Biomaterials 2010; 31(33): 8626-33.
  22. Giusti S., Bogetti M.E., Bonafina A. et al. An improved method to obtain a soluble nuclear fraction from embryonic brain tissue. Neurochem. Res. 2009; 34(11): 2022-9.
  23. Alhamdani M.S., Schroder C., Werner J. et al. Single-step procedure for the isolation of proteins at near-native conditions from mammalian tissue for proteomic analysis on antibody microarrays. J. Proteome Res. 2010; 9(2): 963-71.
  24. Cebotari S., Tudorache I., Jaekel T. et al. Detergent decellularization of heart valves for tissue engineering: toxicological effects of residual detergents on human endothelial cells. Artif. Organs 2010; 34(3): 206-10.
  25. Brown B.N., Freund J.M., Han L. et al. Comparison of three methods for the derivation of a biologic scaffold composed of adipose tissue extracellular matrix. Tissue Eng. Part C Methods 2011; 7(4): 411-21.
  26. Prasertsung I., Kanokpanont S., Bunaprasert T. Development of acellular dermis from porcine skin using periodic pressurized technique. J. Biomed. Mater. Res. B: Appl. Biomater. 2008; 85(1): 210-9.
  27. Hopkinson A., Shanmuganathan V.A., Gray T. et al. Optimization of amniotic membrane (AM) denuding for tissue engineering. Tissue Eng. Part C Methods 2008; 14(4): 371-81.
  28. Waldrop F.S., Puchtler H., Meloan S.N. et al. Histochemical investigations of different types of collagen. Acta Histochem. Suppl. 1980; 21: 23-31.
  29. Gillies A.R., Smith L.R., Lieber R.L. et al. Method for decellularizing skeletal muscle without detergents or proteolytic enzymes. Tissue Eng. Part C Methods 2011; 17(4): 383-9.
  30. Cartmell J.S., Dunn M.G. Effect of chemical treatments on tendon cellularity and mechanical properties. J. Biomed. Mater. Res. 2000; 49(1): 134-40.
  31. Courtman D.W., Pereira C.A., Kashef V. et al. Development of a pericardial acellular matrix biomaterial: biochemical and mechanical effects of cell extraction. J. Biomed. Mater. Res. 1994; 28(6): 655-66.
  32. Badylak S.F. Decellularized allogenic and xenogenic tissue as bioscaffold for regenerative medicine: factors that influence the host response. Annals of biomedical engineering 2014; 42(7): 1517-27.
  33. Corona B.T., Ward C.L., Baker H.B. et al. Implantation of in vitro tissue engineered muscle repair constructs and bladder acellular matrices partially restore in vivo skeletal muscle function in a rat model of volumetric muscle loss injury. Tissue Eng. Part A 2014; 20(3-4): 705-15.
  34. Chen X.K., Walters T.J. Muscle-derived decellularised extracellular matrix improves functional recovery in a rat latissimus dorsi muscle defect model. J. Plast. Reconstr. Aesthet. Surg. 2013; 66(12): 1750-8.
  35. Turner N.J., Badylak J.S. Biologic scaffolds for musculotendinous tissue repair. Eur. Cell Mater. 2013; 25: 130-43.
  36. Mase Jr. V.J., Hsu J.R., Wolf S.E. et al. Clinical application of an acellular biologic scaffold for surgical repair of a large, traumatic quadriceps femoris muscle defect. Orthopedics 2010; 33(7): 511.
  37. Merritt E.K., Hammers D.W., Tierney M. et al. Functional assessment of skeletal muscle regeneration utilizing homologous extracellular matrix as scaffolding. Tissue Eng. Part A 2010; 16(4): 1395-405.
  38. Keane T.J., Londono R., Turner N.J. et al. Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials 2012; 33(6): 1771-81.
  39. Valentin J.E., Stewart-Akers A.M., Gilbert T.W. Macrophage participation in the degradation and remodeling of extracellular matrix scaffolds. Tissue Eng. Part A 2009; 15(7): 1687-94.
  40. Badylak S.F., Valentin J.E., Ravindra A.K. et al. Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng. Part A 2008; 14(11): 1835-42.
  41. Vorotnikova E., McIntosh D., Dewilde A. Extracellular matrix-derived products modulate endothelial and progenitor cell migration and proliferation in vitro and stimulate regenerative healing in vivo. Matrix Biol. 2010; 29(8): 690-700.
  42. Turner N.J., Badylak J.S., Weber D.J. et al. Biologic scaffold remodeling in a dog model of complex musculoskeletal injury. J. Surg. Res. 2012; 176(2): 490-502.
  43. Garg K., Ward C.L., Rathbone C.R. et al. Transplantation of devitalized muscle scaffolds is insufficient for appreciable de novo muscle fiber regeneration after volumetric muscle loss injury. Cell Tissue Res. 2014; 358(3): 857-73.
  44. Hill E., Boontheekul T., Mooney D.J. Designing scaffolds to enhance transplanted myoblast survival and migration. Tissue Eng. 2006; 12(5): 1295-304.
  45. Kesireddy V. Evaluation of adipose-derived stem cells for tissue-engineered muscle repair construct-mediated repair of a murine model of volumetric muscle loss injury. Int. J. Nanomedicine 2016; 11: 1461-73.
  46. Conconi M.T., De Coppi P., Bellini S. et al. Homologous muscle acellular matrix seeded with autologous myoblasts as a tissueengineering approach to abdominal wall-defect repair. Biomaterials 2005; 26(15): 2567-74.
  47. Merritt E.K., Cannon M.V., Hammers D.W. et al. Repair of traumatic skeletal muscle injury with bone-marrow-derived mesenchymal stem cells seeded on extracellular matrix. Tissue Eng. Part A 2010; 16(9): 2871-81.
  48. Fuoco C., Petrilli L.L., Cannata S. et al. Matrix scaffolding for stem cell guidance toward skeletal muscle tissue engineering. J. Orthop. Surg. Res. 2016; 11(1): 86.
  49. Machingal M.A., Corona B.T., Walters T.J. et al. A tissue-engineered muscle repair construct for functional restoration of an irrecoverable muscle injury in a murine model. Tissue Eng. Part A 2011; 17(17-18): 2291-303.
  50. Gholobova D., Decroix L., Van Muylder V. et al. Endothelial network formation within human tissue-engineered skeletal muscle. Tissue Eng. Part A 2015; 21(19-20): 2548-58.
  51. Koffler J., Kaufman-Francis K., Shandalov Y. et al. Improved vascular organization enhances functional integration of engineered skeletal muscle grafts. PNAS USA 2011; 108(36): 14789-94.
  52. Carosio S., Barberi L., Rizzuto E. Generation of eX vivo-vascularized Muscle Engineered Tissue (X-MET). Sci. Rep. 2013; 3: 1420.

Copyright (c) 2017 Eco-Vector

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС 77 - 85657 от 21.07.2023 от 11.03.2014.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies