Biocompatibility and osteoplastic properties of mineral polymer composite materials based on sodium alginate, gelatin, and calcium phosphates intended for 3D-printing of the constructions for bone replacement



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Bone extracellular matrix comprises a unique composite compound including the mineral and organic components. Therefore, use of biomimetic approach to the formation of tissue-engineered constructions for bone defects replacement based on composite materials containing biopolymers and calcium phosphates, as expected, can significantly improve their cyto-, biocompatibility and osteoplastic properties. The aim of the work was to study the structural features, biocompatibility and osteoplastic properties of 3D-constructions based on sodium alginate, gelatin, and two types of calcium phosphates (tricalcium phosphate and octacalcium phosphate) obtained by three-dimensional printing. The method of 3D-constructions fabrication comprised inkjet 3D-printing with hydrogel, consisted of alginate and gelatin with the addition of calcium phosphate granules, followed by freezing, freeze-drying and sterilization by y-irradiation. The structure of 3D-constructions, porosity and strength characteristics were evaluated. After the subcutaneous implantation in mice we investigated the biocompatibility of 3D-constructions during the period of up to 12 weeks. Also the osteoplastic properties of the constructions were estimated in vivo in a rat model of tibial defects. 3D printed constructions had irregular lamellar structure of sodium alginate with inclusions of spherical calcium phosphates granules. Addition of gelatin to the composite increased the porosity of constructs and significantly increased the compressive strength meanwhile practically had no effect on the ultimate strain value. In results of subcutaneous in vivo tests 3D printed constructions demonstrated perfect prolonged biocompatibility. The highest rate of biodegradation was noticed for implants containing octacalcium phosphate. All of the studied 3D-scaffolds had osteoconductive potential, more pronounced according to the number of examined histological parameters in those, made from sodium alginate, gelatin and octacalcium phosphate. The data showed the feasibility and prospect of using three-component mineral polymer composite materials based on alginate, gelatin and octacalcium phosphate as an “ink” for 3D printing of bone grafting constructions intended for implantation in bone defects.

Full Text

Restricted Access

About the authors

P. A Karalkin

P.A. Herzen Moscow Research Institute of Oncology

Moscow, Russia

N. S Sergeeva

P.A. Herzen Moscow Research Institute of Oncology

Moscow, Russia

V. S Komlev

A.A. Baikov Institute of Metallurgy and Materials Science of RAS

Moscow, Russia

I. K Sviridova

P.A. Herzen Moscow Research Institute of Oncology

Moscow, Russia

V. A Kirsanova

P.A. Herzen Moscow Research Institute of Oncology

Moscow, Russia

S. A Akhmedova

P.A. Herzen Moscow Research Institute of Oncology

Moscow, Russia

Ya. D Shanskiy

P.A. Herzen Moscow Research Institute of Oncology

Moscow, Russia

E. A Kuvshinova

P.A. Herzen Moscow Research Institute of Oncology

Moscow, Russia

M. M Filyushin

P.A. Herzen Moscow Research Institute of Oncology

Moscow, Russia

Yu. A Fedotov

A.A. Baikov Institute of Metallurgy and Materials Science of RAS

Moscow, Russia

A. Yu Teterina

A.A. Baikov Institute of Metallurgy and Materials Science of RAS

Moscow, Russia

Yu. V Zobkov

A.A. Baikov Institute of Metallurgy and Materials Science of RAS

Moscow, Russia

S. M Barinov

A.A. Baikov Institute of Metallurgy and Materials Science of RAS

Moscow, Russia

A. D Kaprin

P.A. Herzen Moscow Research Institute of Oncology

Moscow, Russia

References

  1. Yeung M., Bhandari M. Uneven global distribution of randomized trials in hip fracture surgery. Acta Orthop. 2012; 83(4): 328-33.
  2. Oryan A., Alidadi S., Moshiri A. et al. Bone regenerative medicine: classic options, novel strategies, and future directions. J. Orthop. Surg. Res. 2014; 9(1): 18-42.
  3. Kolk A., Handschel J., Drescher W. et al. Current trends and future perspectives of bone substitute materials - from space holders to innovative biomaterials. J. Craniomaxillofac. Surg. 2012; 40(8): 706-18.
  4. Pertici G., Carinci F., Carusi G. et al. Composite polymer-coated mineral scaffolds for bone regeneration: from material characterization to human studies. J. Biol. Regul. Homeost. Agents. 2015; 29(3 Suppl. 1): 136-48.
  5. Tozzi G., De Mori A., Oliveira A. et al. Composite hydrogels for bone regeneration. Materials 2016; 9: 267-91.
  6. Komlev V.S., Barinov S.M., Bozo I.I. et al. Bioceramics composed of octacalcium phosphate demonstrate enhanced biological behavior. ACS Appl Mater Interfaces. 2014; 6(19): 16610-20.
  7. Bergmann C., Lindner M., Zhang W. et al. 30 printing of bone substitute implants using calcium phosphate and bioactive glasses. J. Eur. Ceram. Soc. 2010; 12: 2563-7.
  8. Stoppato M., Vahabzadeh S., Bandyopadhyay A. Bone tissue engineering using 30 printing. Bioact. Compat. Polym. 2013; 28: 16-32.
  9. Сергеева Н.С., Комлев В.С., Свиридова И.К. и др. Некоторые физико-химические и биологические характеристики трехмерных конструкций на основе альгината натрия и фосфатов кальция, полученных методом 30-печати и предназначенных для реконструкции костных дефектов. Гены и Клетки 2015; 2: 39-45.
  10. Баринов С.М., Комлев В.С. Биокерамика на основе фосфатов кальция. М.: Наука, 2005.
  11. Чиссов В.И., Свиридова И.К., Сергеева Н.С. и др. Исследование in vivo биосовместимости и динамики замещения дефекта голени крыс пористыми гранулированными биокерамическими материалами. Клеточные технологии в биологии и медицине 2008; 3: 151-7.
  12. Butler K., Benghuzzi H., Puckett A. Cytological evaluation of the tissue-implant reaction associated with S/C and I/P implantation of ALCAP and HA bioceramics in vivo. Pathol. Res. Pract. 2001; 197(1): 29-39.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies