Impact modified glial-derived neurotrophic factor (GDNF) for regeneration of epithelial and epithelial-stromal corneal defect in the experiment



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective is to study the effect of modified glial-derived neurotrophic factor (GDNF) on healing of epithelial and epithelial-stromal corneal lesions in mice C57BL / 6J. After corneal damage the instillations of supernatant conditioned by HEK293 cells expressed GDNF gene construction without pre- and pro- sequences were produced. For control, a medium conditioned by not transfected cells was used. We assessed the area of corneal epithelial defect and corneal erosion rate, developing after the epithelial defect. The immunohistochemical study using antibodies against cytokeratin 5/18, c-Met, collagen IV, phospho-ERK1/2, phospho-JNK1/2, Ki67, Bcl2, GAP43, TIMR-1, TGF-p, Bax, and MMP 9 was performed. The area of corneal epithelial defect in the eyes of experimental animals within one day after damage was smaller than in the control. Frequencies of corneal erosions formed in the eyes of experimental animals after damage was observed in 30-35% and 80-85% of cases in the experimental and control groups, respectively. Immunohistochemical studies using these antibodies showed that GDNF stimulated the proliferative activity of epithelial cells and keratinocytes, contributed to active migration and adhesion of epithelial cells, had anti-apoptotic and antifibrotic effects, took an active part in the formation of stromal nerve plexus. The results indicate the hopefulness of therapeutic application of the modified GDNF after corneal injury and the need for further research to develop and test methods for the therapeutic use of drugs on the basis of this neurotrophic factor.

Full Text

Restricted Access

About the authors

N. A Gavrilova

A.I. Evdokimov Moscow State University of Medicine and Dentistry

Moscow, Russia

A. V Revischin

Institute of Gene Biology of RAS

Moscow, Russia

S. A Borzenok

S.N. Fedorov Eye Microsurgery Interdisciplinary Science and Technology Complex; S.N. Fedorov Eye Microsurgery Interdisciplinary Science and Technology Complex

Moscow, Russia

O. J Komova

A.I. Evdokimov Moscow State University of Medicine and Dentistry

Moscow, Russia

M. B Agammedov

A.I. Evdokimov Moscow State University of Medicine and Dentistry

Moscow, Russia

H. D Tonaeva

S.N. Fedorov Eye Microsurgery Interdisciplinary Science and Technology Complex

Moscow, Russia

D. S Ostrovsky

S.N. Fedorov Eye Microsurgery Interdisciplinary Science and Technology Complex

Moscow, Russia

G. V Pavlova

Institute of Gene Biology of RAS

Moscow, Russia

References

  1. Мороз З.И. Современные направления хирургического лечения патологии роговицы. В: Аветисов С.Э., Акопян В.С., Белоглазов В.Г. и др., редакторы. Сб. тезисов докладов IX Съезда офтальмологов России, 2010 июнь 16-18; Москва, Россия. Москва: Изд-во «Офтальмология»; 2010. с. 298-9.
  2. You L., Kruse F.E., Volcker H.E. Neurotrophic factors in the human cornea. Invest. Ophthalmol. Vis. Sci. 2000; 41(3): 692-702.
  3. You L., Ebner S., Kruse F.E. Glial cell-derived neurotrophic factor (GDNF) -Induced migration and signal transduction in corneal epithelial cells. Invest. Ophthalmol. Vis. Sci. 2001; 42(11): 2496-504.
  4. Hanke M., Kruse F., Paulista M. et al. Use of GDNF for treating corneal defects. US patent 20030166537A1. 2003 Sept 4.
  5. Namavari A., Chaudhary S., Sarkar J. et al. In vivo serial imaging of regenerating corneal nerves after surgical transection in transgenic thy1-YFP mice. Invest. Ophthalmol. Vis. Sci. 2011; 52: 8025-32.
  6. Chang Y., Wu X.Y. The role of c-Jun N-terminal kinases 1/2 in transforming growth factor beta(1)-induced expression of connective tissue growth factor and scar formation in the cornea. J. Intern. Med. 2009; 37: 727-36.
  7. Chang Y., Wu X.Y. JNK1/2 siRNA inhibits transforming-growth factor-beta1-induced connective tissue growth factor expression and fibrotic function in THSFs. Mol. Cell. Biochem. 2010; 335: 83-9.
  8. Shi L., Chang Y., Yang Y. et al. Activation of JNK signaling mediates connective tissue growth factor expression and scar formation in corneal wound healing. PLoS One 2012; 7(2): e32128.
  9. Reviglio V.E., Hakim M.A., Song J.K. et al. Effect of topical fluoroquinolones on the expression of matrix metalloproteinases in the cornea. BMC Ophthalmol. 2003; 3: 1-10.
  10. Mulholland B., Tuft S.J., Khaw P.T. Matrix metalloproteinase distribution during early corneal wound healing. Eye 2005; 19: 584-8.
  11. Sivak J.M., Fini M.E. MMPs in the eye: emerging roles for matrix metalloproteinases in ocular physiology. Prog. Retin. Eye Res. 2002; 21: 1-14.
  12. Wong T.T., Sethi C., Daniels J.T. et al. Matrix metalloproteinases in disease and repair processes in the anterior segment. Surv. Ophthalmol. 2002; 47: 239-56.
  13. Ramamurthi S., Rahman M.Q., Dutton G.N. et al. Pathogenesis, clinical features and management of recurrent corneal erosions. Eye 2006; 20: 635-44.
  14. Pal-Ghosh S., Blanco T., Tadvalkar G. et al. MMP9 cleavage of the р4 integrin ectodomain leads to recurrent epithelial erosions in mice. J. Cell Sci. 2011; 124: 2666-75.
  15. Kust N., Panteleev D., Mertsalov I. et al. Availability of pre- and pro-regions of transgenic GDNF affects the ability to induce axonal sprout growth. Mol. Neurobiol. 2015; 51(3): 1195-205.
  16. Blanco-Mezquita J.T., Hutcheon A.E., Stepp M.A. et al. aVp6 integrin promotes corneal wound healing. Invest. Ophthalmol. Vis. Sci. 2011; 52: 8505-13.
  17. Wilson S.E., Walker J.W., Chwang E.L. et al. Hepatocyte growth factor, keratinocyte growth factor, their receptors, fibroblast growth factor receptor-2 and the cells of the cornea. Invest. Ophthalmol. Vis. Sci. 1993; 34: 2544-61.
  18. Wilson S.E., Chen L., Mohan R.R. et al. Expression of HGF, KGF, EGF and receptor messenger RNAs following corneal epithelial wounding. Exp. Eye Res. 1999; 68(4): 377-97.
  19. Wilson S.E, Liang Q., Kim W.J. Lacrimal gland HGF, KGF, and EGF mRNA levels increase after corneal epithelial wounding. Invest. Ophthalmol. Vis. Sci. 1999; 40: 2185-90.
  20. Chandrasekher G., Kakazu A.H., Bazan H.E. HGF- and KGF-induced activation of PI-3K/p70 s6 kinase pathway in corneal epithelial cells: its relevance in wound healing. Exp. Eye Res. 2001; 73: 191-202.
  21. Kakazu A., Chandrasekher G., Bazan H.E. HGF protects corneal epithelial cells from apoptosis by the PI-3K/Akt-1/Bad- but not the ERK1/2-mediated signaling pathway. Invest. Ophthalmol. Vis. Sci. 2004; 45: 3485-92.
  22. Sharma G.D., He J., Bazan H.E. p38 and ERK1/2 coordinate cellular migration and proliferation in epithelial wound healing: evidence of cross-talk activation between MAP kinase cascades. J. Biol. Chem. 2003; 278: 21989-97.
  23. Sharma G.D., Kakazu A., Bazan H.E. Protein kinase C alpha and epsilon differentially modulate hepatocyte growth factor-induced proliferation and migration. Exp. Eye Res. 2007; 85(2): 289-97.
  24. Kingsley D.M. The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev. 1994; 8:133-46.
  25. Shi Y., Massague J. Mechanisms of TGF-p signaling from cell membrane to the nucleus. Cell 2003; 113(6): 685-700.
  26. Jester J.V., Barry-Lane P.A., Petroll W.M. et al. Inhibition of corneal fibrosis by topical application of blocking antibodies to TGF beta in the rabbit. Cornea 1997; 16(2): 177-87.
  27. Wu X.Y., Yang Y.M., Guo H. et al. The role of connective tissue growth factor, transforming growth factor p1 and Smad signaling pathway in cornea wound healing. Chin. Med. J. 2006; 119(1): 57-62.
  28. Saghizadeh M., Kramerov A.A., Yu F.X. et al. Normalization of wound healing and diabetic markers in organ cultured human diabetic corneas by adenoviral delivery of c-Met gene. Invest. Ophthalmol. Vis. Sci. 2010; 51(4): 1970-80
  29. Chmielowiec J., Borowiak M., Morkel M. et al. c-Met is essential for wound healing in the skin. J. Cell Biol. 2007; 177: 151-62
  30. Гундорова Р.А., Макарова П.В., Терских В.В. и др. Разработка технологии лечения дефектов роговицы методом трансплантации культивированных аллогенных фибробластов в коллагеновом геле (экспериментальное исследование). Российский офтальмологический журнал 2013; 1: 64-8.
  31. Merjava S., Neuwirth A., Tanzerova M. et al. The spectrum of cytokeratins expressed in the adult human cornea, limbus and perilimbal conjunctiva. Histol. Histopathol. 2011; 26: 323-31.
  32. Robertson D.M., Ladage P.M, Yamamoto N. et al. Bcl-2 and Bax regulation of corneal homeostasis in genetically altered mice. Eye Contact Lens 2006; 32(1): 3-7.
  33. Erickson J.T., Brosenitsch T.A., Katz D.M. Brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor are required simultaneously for survival of dopaminergic primary sensory neurons in vivo. J. Neurosci. 2001; 21: 581-9.
  34. Ogilvie J.M., Speck J.D., Lett J.M. Growth factors in combination, but not individually, rescue rd mouse photoreceptors in organ culture. Exp. Neurol. 2000; 161: 676-85.
  35. Bilak M.M., Kuncl R.W. Delayed application of IGF-I and GDNF can rescue already injured postnatal motor neurons. Neuroreport 2001; 12: 2531-5.
  36. Bengtsson H., Soderstrom S., Kylberg A. et al. Potentiating interactions between morphogenetic protein and neurotrophic factors in developing neurons. J. Neurosci. Res. 1998; 53: 559-68.
  37. Peterziel H., Unsicker K., Krieglstein K. TGFp induces GDNF responsiveness in neurons by recruitment of GFRa1 to the plasma membrane. J. Cell Biol. 2002; 159(1): 157-67.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies