Activity of NOTCH-signaling pathway after subtotal liver resection in rats


Cite item

Abstract

N otch-signaling pathway is critical in the regulation of proliferation and differentiation of mammalian cells. Data on the activity of notch-signaling pathway after liver subtotal resection in rats have not been published yet. After subtotal liver resection in rat, the expression of notch1, notch2 and notch-targets genes (sox9, hes1, yap) was assessed with the polymerase chain reaction, immunohistochemistry and western blot. After subtotal liver resection in rat notch1, notch2, yap were downregulated and sox9, hes1 upregulated. Downregulation of notch1 and notch2 is a necessary condition for the activation of hepatocyte proliferation. Upregulation of notch-targets genes such as sox9 and hes1 it is a probably sign of deep dedifferentiation of hepatocytes and preparing them for proliferation than their transdifferentiation in cholangiocytes.

Full Text

Restricted Access

About the authors

A. V Elchaninov

Research Center for Obstetrics, Gynecology and Perinatology; Scientific Research Institute of Human Morphology

Moscow, Russia

T. Kh Fatkhudinov

Research Center for Obstetrics, Gynecology and Perinatology; Scientific Research Institute of Human Morphology

Moscow, Russia

E. Y Kananykhina

Research Center for Obstetrics, Gynecology and Perinatology; Scientific Research Institute of Human Morphology

Moscow, Russia

I. V Arutyunyan

Research Center for Obstetrics, Gynecology and Perinatology; Scientific Research Institute of Human Morphology

Moscow, Russia

A. V Makarov

Research Center for Obstetrics, Gynecology and Perinatology; Scientific Research Institute of Human Morphology

Moscow, Russia

L. A Knyazeva

N.I. Pirogov Russian National Research Medical University

Moscow, Russia

G. B Bolshakova

Scientific Research Institute of Human Morphology

Moscow, Russia

G. T Sukhikh

Research Center for Obstetrics, Gynecology and Perinatology

Moscow, Russia

References

  1. Ortica S., Tarantino N., Aulner N. et al. The 4 Notch receptors play distinct and antagonistic roles in the proliferation and hepatocytic differentiation of liver progenitors. FASEB J. 2014; 28(2): 603-14.
  2. Morell C.M., Fiorotto R., Fabris L. et al. Notch signalling beyond liver development: emerging concepts in liver repair and oncogenesis. Clin. Res. Hepatol. Gastroenterol. 2013; 37(5): 447-54.
  3. Jeliazkova P., Jors S., Lee M. et al. Canonical Notch2 signaling determines biliary cell fates of embryonic hepatoblasts and adult hepatocytes independent of Hes1. Hepatology 2013; 57(6): 2469-79.
  4. Zong Y., Panikkar A., Xu J. et al. Notch signaling controls liver development by regulating biliary differentiation. Development 2009; 136(10): 1727-39.
  5. Yanger K., Zong Y., Maggs L.R. et al. Robust cellular reprogramming occurs spontaneously during liver regeneration. Genes Dev. 2013; 27(7): 719-24.
  6. Yimlamai D., Christodoulou C., Galli G.G. et al. Hippo pathway activity influences liver cell fate. Cell 2014; 157(6): 1324-38.
  7. Kohler C., Bell A.W., Bowen W.C. et al. Expression of Notch-1 ond its ligand Jagged-1 in rat liver during liver regeneration. Hepatology 2004; 39(4): 1056-65.
  8. Croquelois A., Blindenbacher A., Terracciano L. et al. Inducible inactivation of Notch1 causes nodular regenerative hyperplasia in mice. Hepatology 2005; 41(3): 487-96.
  9. Романова Л.К. Регуляция восстановительных процессов. Москва: Издательство Московского Университета; 1984.
  10. Dahm F., Georgiev P., Clavien P.A. Small-for-size syndrome after partial liver transplantation: definition, mechanisms of disease and clinical implications. Am. J. Transplant. 2005; 5(11): 2605-10.
  11. Sowa J.P., Best J., Benko T. et al. Extent of liver resection modulates the activation of transcription factors and the production of cytokines involved in liver regeneration. World J. Gastroenterol. 2008; 14(46): 7093-100.
  12. Pfaffl M.W. A New Mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001; 29(9): e45.
  13. Vandesompele J., De Preter K., Pattyn F. et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002; 3(7): RESEARCH0034.
  14. Kawaguchi Y.J. Sox9 and programming of liver and pancreatic progenitors. Clin. Invest. 2013; 123(5): 1881-6.
  15. Lefebvre V., Dumitriu B., Penzo-Mendez A. et al. Control of cell fate and differentiation by Sry-related high-mobility-group box (Sox) transcription factors. Int. J. Biochem. Cell Biol. 2007; 39(12): 2195-214.
  16. Furuyama K., Kawaguchi Y., Akiyama H. et al. Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, liver, exocrine pancreas and intestine. Nat. Genet. 2011; 43 (1): 34-41.
  17. Michalopoulos G.K., De Frances M.C. Liver regeneration. Science 1997; 276(5309): 60-6.
  18. Wang X., Ju Y., Zhou M.I. et al. Upregulation of Sox9 promotes cell proliferation, migration and invasion in lung adenocarcinoma. Oncol. Lett. 2015; 10(2): 990-4.
  19. Kageyama R., Ohtsuka T., Kobayashi T. Roles of Hes genes in neural development. Dev. Growth Differ. 2008; 50 Suppl 1: S97-103.
  20. Antoniou A., Raynaud P., Cordi S. et al. Intrahepatic bile ducts develop according to a new mode of tubulogenesis regulated by the transcription factor SOX9. Gastroenterology 2009; 136(7): 2325-33.

Copyright (c) 2016 PJSC Human Stem Cells Institute



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС 77 - 57156 от 11.03.2014.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies