Macrophages: diversity of phenotypes and functions, interaction with foreign materials

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

According to “M1/M2” paradigm two distinct subsets of macrophages have been proposed - classically (M1) or alternatively (M2) activated macrophages that express different receptors, cytokines, chemokines, growth factors and effector molecules but recent evidence suggests that in respond to changed environmental stimuli they can demonstrate unique properties which do not allow to attribute them neither to M1 nor to M2 population. Macrophages play a pivotal role in foreign body reaction following installation of catheters, stents prosthesis, dental implants Macrophages englobe wear particles around joint prosthesis initiating an inflammation in periprosthetic tissues аnd osteolysis, control fibroproliferation and formation of the fibrous capsule surrounding foreign bodies A brief overview of events leading to migration, adhesion and activation of macrophages, and analysis of their functional characteristics on different surfaces including biodegradable and non-biodegradable materials in vivo and in vitro are presented

Full Text

Restricted Access

About the authors

N. N Sarbaeva

Samara State Medical University

J. V Ponomareva

Samara State Medical University

Email: jvponomareva@mail.ru

M. N Milyakova

Samara State Medical University

References

  1. Маянский А.Н., Маянский Д.Н. Очерки о нейтрофиле и макрофаге. Новосибирск: Наука; 1983.
  2. Pixley F.J. Macrophage migration and its regulation by CSF-1. Int. J. Cell Biol. 2012; 2012: 501962.
  3. Меджитов Р., Джанвей Ч. Врожденный иммунитет. Казанский мед. журнал 2004; 85(3): 161-7.
  4. Gordon S. Pattern recognition receptors: doubling up for the innate immune response. Cell 2002; 111: 927-30.
  5. Greaves D., Gordon S. Recent insights into the biology of macrophage scavenger receptors. J. Lipid Res. 2005; 46(1): 11-20.
  6. Bowdish D.M., Sakamoto K., Kim M.J. et al. MARCO, TLR2, and CD14 are required for macrophage cytokine responses to Mycobacterial trehalose dimycolate and Mycobacterium tuberculosis PLoS Pathog. 2009; 5(6): e1000474.
  7. Zizzo G., Hillard B.A., Monestier M. et al. Efficient clearance of early apoptotic cells by human macrophages requires “M2c” polarization and MerTK induction. J. immunol. 2012; 187(7): 3508-20.
  8. Vogel D.Y., Heijnen P.D., Breur M. et al. Macrophages migrate in activation-dependent manner to chemokines involved in neuroinflammation. Neuroinflammation 2014; 11t1): 23.
  9. Vogelpoel L.T., Baeten D.L., de Jong E.C. et al. Control of cytokine production by human Fc gamma receptors: implications for pathogen defense and autoimmunity. Front. immunol. 2015; 6t1): 79.
  10. Soehnlein O., Lindbom L., Weber C. Mechanisms underlying neutrophil-mediated monocyte recruitment. Blood 2009; 114t21): 4613-31.
  11. Mantovani A., Sica A., Sozzani S. et al. The chemokine system in diverse forms of macrophage activation and polarization. Trends in immunology 2004; 25(12): 677-86.
  12. Anderson J.M., Rodriguez A., Chang D.T. Foreign body reaction to biomaterials. Semin. immunol. 2008; 20(2): 86-100.
  13. Нао N.B., Lü M.H., Fan Y.H. et al. Macrophages in tumor microenvironments and the progression of tumor. Clin. Develop. immunol. 2012; 2012: 948098.
  14. Ghigo A., Franco I., Morello F. et al. Myocyte signaling in a leucocyte recruitment to the heart. Cardiovasc. Res. 2014; 102(2): 270-80
  15. Newton K., Dixit V.M. Signaling in innate immunity and inflammation. Cold Spring. Harb. Prospect. Biol. 2012; 4(3): a006049.
  16. Chen X., Wenke Z., Xu W. et al. Granulin exacerbates lupus nephritis via enchandng macrophage M2b polarization. PLOS ONE 2013; 8(6): e65542.
  17. Graff J.W., Dickson A.M., Clay G. et al. Identifying functional microRNAs in macrophages with polarized phenotypes. J. Biol. Chem. 2012; 286(26): 21816-25.
  18. Tatano Y., Shimizu T., Tomioka H. Unique macrophages different from M1/M2 macrophages inhibit T cell mitogenesis while upregulating Th17 polarization. Scie. Rep. 2014; 4: 4146.
  19. Alvarez M.N., Peluffo G., Piacenza L. et al. Intraphagosomal peroxynitrite as macrophage-derided cytotoxine against internalized Trypanosoma crusi. Consequences for oxidative killing and role of microbial peroxiredoxins in infectivity. JBC 2011; 286(8): 6627-40.
  20. Gong D., Shi W., Yi S. et al. TGF-ß signaling plays a critical role in promoting alternative macrophage activation BMC Immunology 2012; 13: 31.
  21. Spiller K.L., Anfang R.R., Spiller K.J. et al. The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials 2014; 35(15): 4477-88.
  22. Gratchev A., Kzhyshkowska J, utikal J. et al. Interleukin-4 and dexamethasone counterregulate extracellular matrix remodelling and phagocytosis in type-2 macrophages. Scand. J. Immunol. 2005; 61: 10-7.
  23. Kreider T., Anthony R.M., Urban J.F. et al. Alternatively activated macrophages in helminth infections Curr Opin Immunol 2007; 19(4): 448-53.
  24. Trial J., Cieslik K.A., Haudek S.B. et al. Th1/M1 conversion toTh2/M2 responses in models of inflammation lacking cell death stimulates maturation of monocyte precursors to fibroblasts Front Immun. 2013; (4): 287.
  25. Xiong W., Frasch S.C., Thomas S.M. et al. Induction of TGF-ß1 synthesis by macrophages in response to apoptotic cells requires activation of scavenger receptor CD36. PLOS oNe 2013; 8(8): e72772.
  26. Jetten N., Roumans N., Gijbels M.J. et al. Wound administration of M2-polarized macrophages does not improve murine cutaneous healing responses. PLOS ONE 2014. 9(7): e102994.
  27. Ylöstalo J.H., Bartosh T.J., Coble K. et al. Human mesenchymal stem/stromal cells thMSCs) cultured as spheroids are selfactivated to produce prostaglandin E2 tPGE2) that directs stimulated macrophages into an anti-inflammatory phenotype. Stem Cells 2012; 30(10): 2283-96.
  28. Wynn T.A. Cellular and molecular mechanisms of fibrosis. J. Pathol. 2008; 214(2): 199-210.
  29. Sun L., Louie M.C., Kevin M. et al. New concepts of IL-10-induced lung fibrosis: fibrocyte recruitment and M2activation in a CCL2/ CCR2 axis. Am. j. Physiol. lung Cell Mol. Physiol. 2011. 300: L341-53.
  30. Wynes M.W., Riches D.W. induction of macrophage insulin-like grows factor-i expression by the Th2 cytokines IL-4 and IL-1. J. immunol. 2003; 171: 3550-9.
  31. Jetten N., Verbruggen S., Gijbels M.J. et al. Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo. Angiogenesis 2014; 17: 109-18.
  32. Shen в., Liu X., Yu Fan Y. et al. Macrophages regulate renal fibrosis through modulating TGF-ß superfamily signaling. inflammation 2014; 37(6): 2076-84.
  33. Avdic S., Cao J.Z., McSharry B.P. et al. Human cytomegalovirus interleukin-10 polarizes monocytes toward a deactivated M2c phenotype to repress host immune responses. J. Virol. 2013; 87(18): 10273-82.
  34. Sindrilaru A., Peters T., Wieschalka S. et al. An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. j. Clin. invest. 2011; 121: 985-97.
  35. Ramachandran P., Pellicoro A., Vernon M.A. et al. Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. PNAS USA 2012; 109(46): E3186-95.
  36. Кавалерский Г.М., Мурылев В.Ю., Петров Н.В. и др. Асептическое расшатывание эндопротеза тазобедренного сустава. М.: Медицина; 2011.
  37. Hallab N.E., Jacobs J. Jj. Biologic effects of implant debris. Bulletin of the NYU Hospital for joint diseases 2009; 67(2): 182-8.
  38. Purdue P.e. , Koulouvaris P., Nestor B.J. et al. The central role of wear debris in periprosthetic osteolysis. HSSj 2006; 2: 102-11.
  39. Плешков В.Г., Агафонов О.И. Послеоперационные вентральные грыжи - нерешенные проблемы. Вестник экспериментальной и клинической хирургии 2009; 2(3): 248-55.
  40. Orenstein S.B., Sabeski E.R., Kreutzer D.L. et al. Comparative analysis of histopathologic effects of synthetic meshes based on material, weight, and pore size in mice. j. Surg. Res. 2012; 176: 423-9.
  41. Hu W.J., Eaton J.W., Ugarova T.P. et al. Molecular basis of biomaterial-mediated foreign body reactions. Blood 2001; 98: 1231-8.
  42. Podolnikova N.P., Yermolenko J.S., Fuhrmann A. et al. Control of integrin α IIbβ 3 outside-in signaling and platelet adgesion by sensing the physical propertiesof fibrin(ogen) substrates. Biochemistry 2010; 46: 68-77
  43. Andersson J., Ekdahl K.N., Lambris J.D. et al. Binding of C3 fragment on top of adsorbed plasma proteins during complement activation on a model biomaterial surface Biomaterials 2005; 26: 1477-85.
  44. Brevig T., Holst B., Ademovic Z. et al. The recognition of adsorbed and denatured protein of different topographies by β2 integrins end effects on leukocyte adhesion and activation Biomaterials 2005; 26: 3039-53
  45. Zaveri T.D., Lewisj S., Dolgova N.V. et al. Integrin-directed modulation of macrophage responses to biomaterials Biomaterials 2014; 35: 3504-15.
  46. Hernandez-Pando R., Bornstein Q.L., Leon D.A. et al. inflammatory cytokine production by immunological and foreign body multinucleated giant cells. immunology 2000; 100: 352-8.
  47. Higgins D.M., Basaraba R.J., Hohnbaum A.C. et al. Localized immunosuppressive environment in the foreign body response to implanted biomaterials. Am. J. Pathol. 2009; 175(1): 161-70.
  48. Ariganello M.B., Simionescu D.T., Labowa R.S. et al. Macrophage differentiation and polarization on a decellularized pericardial biomaterial. Biomaterials 2011; 32(2): 439-49.
  49. McDade J.K., Brennan-Pierce E.P., Ariganello M.B. et al. interactions of U937 macrophage-like cells with decellularized pericardial matrix materials: influence of crosslinking treatment Acta Biomater. 2013; 9: 7191-9.
  50. Kajahn J., Franz S., Rueckert E. et al. Artificial extracellular matrices composed of collagen I and high sulfated hyaluronan modulate monocyte to macrophage differentiation under conditions of sterile inflammation. Biomatter. 2012; 2(4): 226-36.
  51. Orenstein S.B., Qiao Y., Kaur M. et al. Human monocyte activation by biologic and biodegradable meshes in vitro Surg Endosc 2010; 24: 805-11.
  52. Gretzer C., Gisselfält K., Liljensten E. et al. Adhesion, apoptosis and cytokine release of human mononuclear cells cultured on degradable poly(urethane urea), polystyrene and titanium in vitro. Biomaterials 2003; 24: 2843-52
  53. Grotenhuis N., Bayon Y., Lange J.F. et al. A culture model to analyze the acute biomaterial-dependent reaction of human primary macrophages. Biochem. Biophys. Res. Communic. 2013; 433: 115-20.
  54. Schutte R.J., Parisi-Amon A., Reichert W.M. Cytokine profiling using monocytes/macrophages cultured on common biomaterials with a range of surface chemistries j Biomed Mater Res 2009; 88(1): 28-39.
  55. Lynn A.D., Bryant S.J. Phenotypic changes in bone marrow derived murine macrophages cultured on PEG-based hydrogels and activated by lipopolysaccharide. Acta Biomater. 2011; 7(1): 123-32.
  56. Ye O., Harmsen M.C., van Luyn M.J. A et al. The relationship between collagen scaffold cross-linking agents and neutrophils in the foreign body reaction. Biomaterials 2010; 31: 9192-201.
  57. Wolf M.T., Dearth C.L., Ranallo C.A. et al. Macrophage polarization in response to ECM coated polypropylene mesh Biomaterials 2014; 35: 6838-49.
  58. Brown N., Londono R., Tottey S. et al. Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials. Acta Biomater. 2012; 8: 978-87
  59. Van Putten S.M., Ploege D.T.A., Popa E.R. et al. Macrophage phenotypes in the collagen-induced foreign body reaction in rats. Acta Biomater. 2013; 9: 6502-10.
  60. Bullers S.J. , Baker S.C., ingham E. et al. The human tissue- biomaterial interface: a role for PPARg-dependent glucocorticoid receptor activation in regulating the CD163+ M2 macrophage phenotype. Tissue Engineering: Part A 2014; 20(17-18): 2390-401.
  61. Zogbi L., Portella A.O., Trindade M.R. et al. Retraction and fibroplasia in a polypropylene prosthesis: experimental study in rats Hernia 2010 14: 291-8.
  62. Wu W.K., Llewellyn O.P., Bates D.O. et al. IL-10 regulation of macrophage VEGF production is dependent on macrophage polarisation and hypoxia. immunobiol. 2010; 215(9-10): 796-803.
  63. Zhu Z., Ma B., Zheng T. et al. IL-13-induced chemokine responses in the lung: role of CCR2 in the pathogenesis of IL-13-induced inflammation and remodeling j immunol 2002; 168: 2953-62
  64. Иванов И.С., Иванов С.В., Горяинова Г.Н. Использование клеточных технологий с целью улучшения свойств соединительной ткани в эксперимент. Новости хирургии 2012; 20(4): 3-8.
  65. Кулаков А.А., Григорьян А.С., Архипов А.В. Влияние различных способов модификации поверхности дентальных имплантатов на их интеграционный потенциал. Стоматология 2012; 6: 75-7.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies