Experimental models for studying of skeletal muscles regeneration

Cite item


Striated muscles play an important role in the maintenance in the maintenance of locomotion, ventilation, mechanical protection, the inner organs support, a common system of energy exchange etc. Skeletal muscle tissue is exposed to various external factors which cause notable damage to skeletal tissue as a result of mechanical injury (contusion, compression, laceration), inflammation as an implication of infectious agents and autoimmune process, toxic effects of various chemical substances. Besides the external causes, genes' defects that code muscle protein components have influence on the muscles too. These defects lead to muscular dystrophies (Duchenne Becker muscular dystrophy, dysferlinopathy, calpainopathy etc.). In condition of serious injuries the cambial reserve by means of myosatellite cells and other myogenic cells usually does not provides hysto-and organotypic skeletal muscles regeneration. This fact determines development of new methods for induction of regeneration striated muscles and, in turn, requires amplification of using experimental models of muscles injury for studying regeneration of skeletal muscles The aim of this review is comparative description of experimental models applied for studying of skeletal muscles regeneration after its damage

Full Text

Restricted Access

About the authors

O. N Chernova

Kazan (Volga region) Federal University

Email: olgachernova92@yandex.ru

I. N Korsakov

Central Clinical Hospital with Outpatient Health Center of the Business Administration for the President of the Russian Federation

D. P Samchuk

Central Clinical Hospital with Outpatient Health Center of the Business Administration for the President of the Russian Federation

A. A Pulin

Central Clinical Hospital with Outpatient Health Center of the Business Administration for the President of the Russian Federation

M. O Mavlikeev

Kazan (Volga region) Federal University

R. V Deev

Kazan (Volga region) Federal University; Human Stem Cells Institute

I. I Eremin

Central Clinical Hospital with Outpatient Health Center of the Business Administration for the President of the Russian Federation


  1. Fu X., Wang H., Hu P. Stem cell activation in skeletal muscle regeneration. Cellular and Molecular Life Sciences 2015; 72(9): 1663-1677.
  2. Студитский А.Н. Восстановление органов и тканей живого организма. Стенограмма публичной лекции. Изд. «Знание», Москва. 1952; 40 с.
  3. Студитский А.Н. Трансплантация мышц у животных. М. :Медицина, 1977: 248.
  4. DeSouza A., Cornwell P., Dai X. et al. Agonists of the peroxisome proliferator-activated receptor alpha induce a fiber-type-selective transcriptional response in rat skeletal muscle. Toxicol. Sci. 2006; 92: 578-586
  5. Ng Y., Goldspink D.F., Burniston J.G. et al. Characterization of isoprenaline myotoxicity on slow-twitch skeletal versus cardiac muscle. Int. J. Cardiol. 2002; 86(2-3): 299-309.
  6. Schaefer W.H., Lawrence J.W., Loughlin A.F. et al. Evaluation of ubiquinone concentration and mitochondrial function relative to cerivastatin-induced skeletal myopathy in rats. Toxicol. Appl. Pharmacol. 2004; 194: 10-23.
  7. Braunstein P.W., De Girolami U. Experimental corticosteroid myopathy. Acta Neuropathol. 1981; 55: 167-172.
  8. Vainzof M., Ayub-Guerrieri D., Onofre P.C. et al. Animal Models for Genetic Neuromuscular Diseases. J. Mol. Neurosci. 2008; 34: 241-248.
  9. Пиголкин Ю.И. Судебная медицина. 3-е издание. «ГЭОТАР-Медиа»; 2012. c. 475-476, 488.
  10. Smith C., Kruger M.J., Smith R.M. et al. The inflammatory response to skeletal muscle injury illuminating complexities. Sports Med. 2008; 38 (11): 947-969.
  11. Ambrosio F., Ferrari R.J., Distefano G. et al. The synergistic effect of treadmill running on stem-cell transplantation to heal injured skeletal muscle. Tissue Eng. Part A 2010; 16: 839-49.
  12. Crisco J.J., Hentel K.D., Jackson W.O. et al. Maximal contraction lessens impact response in a muscle contusion model. J. Biomech. 1996; 29: 1291-6.
  13. Minamoto V.B., Grazziano C.R., Salvini T.F. Effect of single and periodic contusion on the rat soleus muscle at different stages of regeneration. Anat. Rec. 1999; 254: 281-7.
  14. Puntel G.O., Carvalho N.R., Amaral G.P. et al. Therapeutic cold: an effective kind to modulate the oxidative damage resulting of a skeletal muscle contusion. Free Radic. Res. 2011; 45:125-38.
  15. Souza J., Gottfried C. Muscle injury: Review of experimental models. J. Electromyogr. Kinesiol. 2013; 23(6): 1253-60.
  16. Minamoto V.B., Bunho S.R., Salvini T.F. Regenerated rat skeletal muscle after periodic contusions. Braz. J. Med. Biol. Res. 2001; 34: 1447-52.
  17. Nozaki M., Li Y., Zhu J. et al. Improved muscle healing after contusion injury by the inhibitory effect of suramin on myostatin, a negative regulator of muscle growth. Am. J. Sports Med. 2008; 36: 2354-62
  18. McBrier N.M., Lekan J.M., Druhan L.J. et al. Therapeutic ultrasound decreases mechano-growth factor messenger ribonucleic acid expression after muscle contusion injury. Arch. Phys. Med. Rehabil. 2007; 88: 936-40.
  19. Shu B., Yang Z., Li X., Zhang L.Q. Effect of different intensity pulsed ultrasound on the restoration of rat skeletal muscle contusion. Cell. Biochem. Biophys. 2012; 62: 329-36.
  20. Silveira P.C., Victor E.G., Schefer. et al. Effects of therapeutic pulsed ultrasound and dimethylsulfoxide (DMSO) phonophoresis on parameters of oxidative stress in traumatized muscle. Ultrasound Med. Biol. 2010; 36: 44-50.
  21. Luo L., Sun Z., Zhang L. et al. Effects of low-level laser therapy on ROS homeostasis and expression of IGF-1 and TGF-beta1 in skeletal muscle during the repair process. Lasers Med. Sci. 2012; 28(3): 725-34
  22. Filippin L.I., Cuevas M.J., Lima E. et al. Nitric oxide regulates the repair of injured skeletal muscle. Nitric Oxide 2011; 24: 43-9.
  23. Akimau P., Yoshiya К., Hosotsubo H. et al. New experimental model of crush injury of the hindlimbs in rats. J. Trauma 2005; 58(1): 51-8.
  24. Rubinstein I., Abassi Z., Coleman R. et al. Involvement of nitric oxide system in experimental muscle crush injury. J. Clin. Invest. 1998; 101(6): 1325-33.
  25. Dobek G.L., Fulkerson N.D., Nicholas J. et al. Mouse Model of Muscle Crush Injury of the Legs. Comparative Medicine 2013; 63(3): 227-232.
  26. Chen X., Liu Y., Xu W. et al. Experimental study on establishment of a simple model of rats crush injury-crush syndrome Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2013; 27(1): 77-82.
  27. Kong D.Y., Hao L.R., Zhang L. et al. Comparison of two fluid solutions for resuscitation in a rabbit model of crush syndrome Clin Exp. Nephrol. 2015; 19 (6): 1015-1023.
  28. Song J., Ding H., Fan H.J. et al. Canine model of crush syndrome established by a digital crush injury device platform. Int. J. Clin. Exp. Pathol. 2015; 8(6): 6117-6125.
  29. Ghaly A., Marsh D.R. Aging-associated oxidative stress modulates the acute inflammatory response in skeletal muscle after contusion injury. Exp. Gerontol. 2010; 45: 381-8.
  30. Rantanen J., Thorsson O., Wollmer P. et al. Effects of therapeutic ultrasound on the regeneration of skeletal myofibers after experimental muscle injury. Am. J. Sports Med. 1999; 27: 54-9.
  31. Winkler T., von Roth P., Matziolis G. et al. Time course of skeletal muscle regeneration after severe trauma. Acta Orthop. 2011; 82: 102-11.
  32. Takagi R., Fujita N., Arakawa T. et al. Influence of icing on muscle regeneration after crush injury to skeletal muscles in rats J Appl. Physiol. 2011; 110: 382-8.
  33. Via A.G., Oliva F., Spoliti M. et al. Acute compartment syndrome. Muscles Ligaments Tendons J. 2015; 5(1): 18-22.
  34. Criswell T.L., Corona B.T., Ward C.L. et al. Compression-induced muscle injury in rats that mimics compartment syndrome in humans. Am. J. Pathol. 2012; 180: 787-797.
  35. Lawendy A.R., Sanders D.W., Bihari A. et al. Compartment syndrome-induced microvascular dysfunction: an experimental rodent model. Can. J. Surg. 2011; 54(3): 194-200.
  36. Walters T.J., Kragh J.F., Kauvar D.S. et al. The combined influence of hemorrhage and tourniquet application on the recovery of muscle function in rats. J. Orthop. Trauma 2008; 22: 47-51.
  37. Hakaim A.G., Corsetti R., Cho S. I. The pentafraction of hydroxyethyl starch inhibits ischemia-induced compartment syndrome. J. Trauma 1994; 37(1): 18-21.
  38. Kim J.G., Lee J., Roe J. et al. Hemodynamic changes in rat leg muscles during tourniquet-induced ischemia-reperfusion injury observed by near-infrared spectroscopy Physiol Meas 2009; 30: 529-540
  39. He L., Li G., Feng X. et al. Effect of energy compound on skeletal muscle strain injury and regeneration in rats Ind Health 2008; 46: 506-12.
  40. Song H., Nakazato K., Nakajima H. Effect of increased excursion of the ankle on the severity of acute eccentric contraction-induced strain injury in the gastrocnemius: an in vivo rat study Am J Sports Med. 2004; 32: 1263-9.
  41. Toumi H., F'Guyer S., Best T. M. The role of neutrophils in injury and repair following muscle stretch. J. Anat. 2006; 208: 459-70.
  42. Brickson S., Hollander J., Corr D.T. et al. Oxidant production and immune response after stretch injury in skeletal muscle Med Sci Sports Exerc. 2001; 33: 2010-5.
  43. Butterfield T.A., Herzog W. Effect of altering starting length and activation timing of muscle on fiber strain and muscle damage J Appl. Physiol. 2006; 100: 1489-98.
  44. Hammond J.W., Hinton R.Y., Curl L.A. et al. Use of autologous platelet-rich plasma to treat muscle strain injuries Am J Sports Med. 2009; 37: 1135-42.
  45. Pratt S.J., Lawlor M.W., Shah S.B. et al. An in vivo rodent model of contraction induced injury in the quadriceps muscle Injury 2012; 43: 788-93.
  46. Carvalho N., Puntel G., Correa P. et al. Protective effects of therapeutic cold and heat against the oxidative damage induced by a muscle strain injury in rats. J. Sports Sci. 2010; 28: 923-35.
  47. Ramos L., Leal Junior E. C., Pallotta R. C. et al. Infrared (810 nm) low-level laser therapy in experimental model of strain induced skeletal muscle injury in rats: effects on functional outcomes Photochem. Photobiol. 2012; 88: 154-60.
  48. Banks G.B., Combs A.C., Chamberlain J.R. et al. Molecular and cellular adaptations to chronic myotendinous strain injury in mdx mice expressing a truncated dystrophin Hum Mol Genet 2008; 17: 3975-86
  49. Stauber W.T. Factors involved in strain-induced injury in skeletal muscles and outcomes of prolonged exposures J Electromyogr Kinesiol. 2004; 14: 61-70.
  50. Schiaffino S., Partridge T. Skeletal muscle repair and regeneration Advances in muscle research Vol. 3 Dordrecht, The Netherlands: Springer; 2008. p. 169-172.
  51. Whittaker D.K. Ultrastructural changes in muscle following freezing in situ by a surface applied cold probe J Pathol 1975; 115(3): 139-45.
  52. Meng H., Janssen P.M., Grange R.W. et al. Tissue triage and freezing for models of skeletal muscle disease J Vis Exp 2014; 89: 51586
  53. Aarimaa V., Kaariainen M., Vaittinen S. et al. Restoration of myofiber continuity after transection injury in the rat soleus Neuromuscul. Disord. 2004; 14: 421-8.
  54. Hwang J.H., Ra Y.J., Lee K.M. et al. Therapeutic effect of passive mobilization exercise on improvement of muscle regeneration and prevention of fibrosis after laceration injury of rat Arch Phys Med. Rehabil. 2006; 87: 20-6.
  55. Menetrey J., Kasemkijwattana C., Fu F.H. et al. Suturing versus immobilization of a muscle laceration A morphological and functional study in a mouse model. Am. J. Sports Med. 1999; 27: 222-9
  56. Chan Y.S., Hsu K.Y., Kuo C.H. et al. Using low-intensity pulsed ultrasound to improve muscle healing after laceration injury: an in vitro and in vivo study. Ultrasound Med. Biol. 2010; 36: 743-751.
  57. Garrett W.E.Jr., Seaber A.V., Boswick J. et al. Recovery of skeletal muscle after laceration and repair. J. Hand Surg. Am. 1984; 9(5): 683-92
  58. Wu X., Corona B.T., Chen X. et al. A standardized rat model of volumetric muscle loss injury for the development of tissue engineering therapies. Biores. Open Access 2012; 1(6): 280-90.
  59. Sicari B.M., Agrawal V., Siu B.F. et al. A murine model of volumetric muscle loss and a regenerative medicine approach for tissue replacement. Tissue Eng. Part A 2012; 18(19-20): 1941-8.
  60. Ma J., Sahoo S., Baker A.R. et al. Investigating muscle regeneration with a dermis/small intestinal submucosa scaffold in a rat full-thickness abdominal wall defect model J Biomed Mater Res B Appl. Biomater. 2015; 103(2): 355-64.
  61. Turner N.J., Badylak J.S., Weber D.J. et al. Biologic Scaffold remodeling in a dog model of complex musculoskeletal injury J Surg Res. 2012; 176: 490-502.
  62. Pilia M., McDaniel J.S., Guda T. et al. Transplantation and perfusion of microvascular fragments in a rodent model of volumetric muscle loss injury. Eur. Cell. Mater. 2014; 28: 11-2.
  63. Данилов Р.К. Раневой процесс: гистогенетические основы. СПб: ВМедА им. С. М. Кирова, 2007; 380 с.; ил.
  64. Михайлов С.В. Экспериментально-клиническое обоснование возможности сохранения жизнеспособности тканей при огнестрельных переломах [диссертация]. Санкт-Петербург: ВМедА; 1997.
  65. Мурзабаев Х.Х., Кашапов И.Г. Способ дозированной передачи кинетической энергии снаряда повреждаемым тканям. Морфология 2001; 120(6): 83-84.
  66. Thompson P.D., Clarkson P., Karas R. H. Statin-associated myopathy. JAMA 2003; 289(13): 1681-90.
  67. Moßhammer D., Schaeffeler E., Schwab M. et al. Mechanisms and assessment of statin-related muscular adverse effects British Journal of Clinical Pharmacology 2014; 78(3): 454-466.
  68. Vassallo J.D., Janovitz E.B., Wescott D.M. et al. Biomarkers of drug-induced skeletal muscle injury in the rat: troponin I and myoglobin Toxicol. Sci. 2009; 111(2): 402-12.
  69. Foster A.H., Carlson B.M. Myotoxicity of local anesthetics and regeneration of the damaged muscle fibers. Anesth. Analg. 1980; 59(10): 727-36.
  70. Ikutomo M., Sakakima H., Matsuda F. et al. Midkine-deficient mice delayed degeneration and regeneration after skeletal muscle injury. Acta Histochemica 2014; 116: 319-326.
  71. Nishizawa T., Tamaki H., Kasuga N. et al. Degeneration and regeneration of neuromuscular junction architecture in rat skeletal muscle fibers damaged by bupivacaine hydrochloride J Muscle Res Cell. Motil. 2003; 24(8): 527-37.
  72. Politi P.K., Havaki S., Manta P. et al. Bupivacaine-induced regeneration of rat soleus muscle: ultrastructural and immunohistochemical aspects Ultrastruct Pathol 2006; 30(6): 461-9.
  73. Yildiz K., Efesoy S.N., Ozdamar S. et al. Myotoxic effects of levobupivacaine, bupivacaine and ropivacaine in a rat model Clin Invest. Med. 2011; 34(5): E273.
  74. Grim M., Rerábková L., Carlson B.M. A test for muscle lesions and their regeneration following intramuscular drug application Toxicol Pathol. 1988; 16(4): 432-42.
  75. Chargé S.B., Rudnicki M.A. Cellular and molecular regulation of muscle regeneration. Physiol. Rev. 2004; 84(1): 209-38.
  76. Hirata A., Masuda S., Tamura T. et al. Expression profiling of cytokines and related genes in regenerating skeletal muscle after cardiotoxin injection: a role for osteopontin The American Journal of Pathology 2003; 163(1): 203-215.
  77. Couteaux R., Mira J.C., d'Albis A. Regeneration of muscles after cardiotoxin injury. I. Cytological aspects. Biol. Cell. 1988; 62(2): 171-82.
  78. Mahdy M.A., Lei H.Y., Wakamatsu J. et al. Comparative study of muscle regeneration following cardiotoxin and glycerol injury Annals of Anatomy-Anatomischer. Anzeiger. 2015; 202: 18-27.
  79. Dettbarn W.D. Pesticide induced muscle necrosis: Mechanisms and prevention. Fundamen. Appl. Toxicol. 1984; 4: 18-26.
  80. Limbourg A., Korff T., Napp L.C. et al. Evaluation of postnatal arteriogenesis and angiogenesis in a mouse model of hind-limb ischemia. Nat. Protoc. 2009; 4(12): 1737-46.
  81. Hellingman A.A., Bastiaansen A.J., de Vries M.R. et al. Variations in surgical procedures for hind limb ischaemia mouse models result in differences in collateral formation. Eur. J. Vasc. Endovasc. Surg.: Off J. Eur. Soc. Vasc. Surg. 2010; 40(6): 796-803.
  82. Masaki I., Yonemitsu Y., Yamashita A. et al. Angiogenic gene therapy for experimental critical limb ischemia: acceleration of limb loss by overexpression of vascular endothelial growth factor 165 but not of fibroblast growth factor-2. Circ. Res. 2002; 90(9): 966-73.
  83. Yang Y., Tang G., Yan J. et al. Cellular and molecular mechanism regulating blood flow recovery in acute versus gradual femoral artery occlusion are distinct in the mouse. J. Vasc. Surg. 2008; 48(6): 1546-58.
  84. Mufti S.A. Regeneration following denervation of minced gastrocnemius muscles in mice. J. Neurol. Sci. 1977; 33(1-2): 251-66.
  85. Mufti, Hsu L. The role of nerves in the regeneration of minced skeletal muscle in adult anurans. Anat. Rec. 1974; 179(1): 119-35.
  86. Larry E. Davis, Mario Kornfeld. Experimental influenza B viral myositis. Journal of the Neurological Sciences 2001; 187: 61-67.
  87. Zaid A., Rulli N.E., Rolph M.S. et al. Disease exacerbation by etanercept in a mouse model of alphaviral arthritis and myositis. Arthritis Rheum. 2011; 63(2): 488-91.
  88. Tseng C.W., Kyme P., Low J. et al. Staphylococcus aureus Panton-Valentine Leukocidin Contributes to Inflammation and Muscle Tissue Injury. PLoS One. 2009; 4(7): e6387.
  89. Pacielloa O., Olivab G., Gradonic L. et al. Canine inflammatory myopathy associated with Leishmania Infantum infection. Neuromuscular Disorders 2009; 19(2): 124-130.
  90. Shin J., Tajrishi M.M., Ogura Y. et al. Wasting mechanisms in muscular dystrophy. Int. J. Biochem. Cell. Biol. 2013;45(10):2266-79.
  91. Partridge T.A. The mdx mouse model as a surrogate for Duchenne muscular dystrophy. FEBS J. 2013; 280(17): 4177-86.
  92. Zhang H., Kieckhaefer J.E., Cao K. Mouse models of laminopathies. Aging. Cell. 2013; 12(1): 2-10.
  93. Rahimov F., Kunkel L.M. The cell biology of disease: cellular and molecular mechanisms underlying muscular dystrophy. J. Cell. Biol. 2013; 201(4): 499-510.
  94. McGreevy J.W., Hakim C.H., McIntosh M.A. et al. Animal models of Duchenne muscular dystrophy: from basic mechanisms to gene therapy. Dis. Model. Mech. 2015; 8(3): 195-21.
  95. Yu X., Bao B., Echigoya Y. et al. Dystrophin-deficient large animal models: translational research and exon skipping. Am. J. Transl. Res. 2015; 7(8): 1314-31.
  96. Whitmore C., Morgan J. What do mouse models of muscular dystrophy tell us about the DAPC and its components? Int. J. Exp. Path. 2014; 95: 365-377.
  97. Dubowitz V. The muscular dystrophies. Postgrad. Med. J. 1992; 68: 500-506
  98. Nakamura A., Takeda S. Mammalian models of Duchenne Muscular Dystrophy: pathological characteristics and therapeutic applications. J. Biomed. Biotechnol. 2011; 2011: 184393.
  99. Gambino A.N., Mouser P.J., Shelton G.D. et al. Emergent presentation of a cat with dystrophin-deficient muscular dystrophy. J. Am. Anim. Hosp. Assoc. 2014; 50(2): 130-5.
  100. Nakamura K., Fujii W., Tsuboi M. et al. Generation of muscular dystrophy model rats with a CRISPR/Cas system. Sci. Rep. 2014; 4: 5635
  101. Klymiuk N., Blutke A., Graf A. Dystrophin-deficient pigs provide new insights into the hierarchy of physiological derangements of dystrophic muscle. Hum. Mol. Genet. 2013; 22(21): 4368-82.
  102. Kobayashi K., Izawa T., Kuwamura M. et al. The distribution and characterization of skeletal muscle lesions in dysferlin-deficient SJL and A/J mice. Exp. Toxicol. Pathol. 2010; 62(5): 509-17.
  103. Hornsey M.A., Laval S.H., Barresi R. et al. Muscular dystrophy in dysferlin-deficient mouse models. Neuromuscular Disorders 2013; 23(5): 377-387.
  104. Shelton G.D., Engvall E. Canine and feline models of human inherited muscle diseases. Neuromuscul. Disord. 2005; 15(2): 127-38.
  105. Durbeej M., Campbell K.P. Muscular dystrophies involving the dystrophin-glycoprotein complex: an overview of current mouse models. Curr. Opin. Genet. Dev. 2002; 12(3): 349-61.
  106. Miyagoe Y., Hanaoka K., Nonaka I. et al. Laminin alpha2 chain-null mutant mice by targeted disruption of the Lam2 gene: a new model of merosin (laminin 2)-deficient congenital muscular dystrophy. FEBS Lett. 1997; 415: 33-39.
  107. Grewal P.K., Holzfeind P.J., Bittner R.E. et al. Mutant glycosyltransferase and altered glycosylation of alpha-dystroglycan in the myodystrophy mouse. Nat. Genet. 2001; 28: 151-154.
  108. Williamson R.A., Henry M.D., Daniels K.J. et al. Dystroglycan is essential for early embryonic development: disruption of Reichert's membrane in Dag1-null mice. Hum. Mol. Genet. 1997; 6: 831-841.
  109. Côté P.D., Moukhles H., Lindenbaum M. et al. Chimeric mice deficient in dystroglycans develop muscular dystrophy and have disrupted monaural synapses. Nat. Genet. 1999; 23: 338-342.
  110. Hnasko R., Lisanti M.P. The biology of caveolae: lessons from caveolin knockout mice and implications for human disease. Mol. Intervent 2003; 3: 445-464
  111. Mayer U., Saher G., Fassler R. et al. Absence of integrin α7 causes a novel form of muscular dystrophy. Nat. Genet. 1997; 17: 318-323.
  112. Kambadur R., Sharma M., Smith T. P. et al. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res. 1997; 7:910-6.
  113. Patel K., Amthor H. The function of Myostatin and strategies of Myostatin blockade-new hope for therapies aimed at promoting growth of skeletal muscle. Neuromuscul. Disord. 2005; 15(2): 117-26
  114. Mosher D.S., Quignon P., Bustamante C.D. et al. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genet. 2007; 3(5): e79.
  115. Kobayashi K., Izawa T., Kuwamura M. et al. Dysferlin and animal models for dysferlinopathy. J. Toxicol. Pathol. 2012; 25: 135-47.
  116. Goebel H.H., Sewry C.A., Weller R.O. Muscle Disease: Pathology and Genetics. Second edition 2013; 111.
  117. Lewis M.R. Rhythmical contraction of the skeletal mauscle tissue observed in tissue cultures. Am. J. Physiol. 1915; 38: 153-61
  118. Levi G. Migrazione di elementi specifici differenziati in colture di miocardio e di muscoli scheletrici. Arch per le Sci Medichi 1916; 40:1
  119. Максимов А.А. О культивировании «ин витро» соединительной ткани взрослых млекопитающих. Петроград; 1916.
  120. Pogogeff I.A., Murray M.R. Regeneration of adult mammalian skeletal muscle in vitro. Science 1945; 101(2616): 174.
  121. Pogogeff I.A., Murray M.R. Form and behavior of adult mammalian skeletal muscle in vitro. Anat. Rec. 1946; 95(3): 321-35.
  122. LeGros Clark W. An experimental study of the regeneration of mammalian striped muscle. J. Anat. 1946; 80: 24-36.
  123. Mauro A. Satellite cell of skeletal muscle fibers. J. Biophys. Biochem. Cytol. 1961; 9: 493-5.
  124. Bischoff R. Regeneration of single skeletal muscle fibers in vitro. Anat. Rec. 1975; 182(2): 215-35.
  125. Bischoff R. Proliferation of muscle satellite cells on intact myofibers in culture. Dev. Biol. 1986; 115(1): 129-39.
  126. Bekoff A., Betz W. Properties of isolated adult rat muscle fibers maintained in tissue culture. J. Physiol. 1977; 271(2): 537-47.
  127. Rosenblatt J.D., Lunt A.I., Parry D.J., Partridge T.A. Culturing satellite cells from living single muscle fiber explants. In Vitro Cell Dev. Biol. Anim. 1995; 31(10): 773-9.
  128. Pasut A., Jones A.E., Rudnicki M.A. Isolation and culture of individual myofibers and their satellite cells from adult skeletal muscle. J. Vis. Exp. 2013; (73): e50074.
  129. Di Foggia V., Robson L. Isolation of satellite cells from single muscle fibers from young, aged, or dystrophic muscles. Methods Mol. Biol. 2012; 916: 3-14.
  130. Keire P., Shearer A., Shefer G. et al. Isolation and Culture of Skeletal Muscle Myofibers as a Means to Analyze Satellite Cells. In 2013. p. 431-68.
  131. Freshney R.I. Culture of Animal Cells. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2010.
  132. Andrés V., Walsh K. Myogenin expression, cell cycle withdrawal, and phenotypic differentiation are temporally separable events that precede cell fusion upon myogenesis. J. Cell. Biol. 1996; 132(4): 657-66.
  133. Liao I.-C., Liu J.B., Bursac N. et al. Effect of Electromechanical Stimulation on the Maturation of Myotubes on Aligned Electrospun Fibers. Cell. Mol. Bioeng. 2008; 1(2-3): 133-45.
  134. Miyatake S., Bilan P.J., Pillon N.J. et al. Contracting C2C12 myotubes release CCL2 in an NF-κB-dependent manner to induce monocyte chemoattraction. Am. J. Physiol. Endocrinol. Metab. 2015; ajpendo. 00325. 2015.
  135. Das M., Rumsey J.W., Bhargava N. et al. Developing a novel serum-free cell culture model of skeletal muscle differentiation by systematically studying the role of different growth factors in myotube formation. In Vitro Cell Dev. Biol. Anim. 2009; 45(7): 378-87.
  136. Ostrovidov S., Hosseini V., Ahadian S. et al. Skeletal Muscle Tissue Engineering: Methods to Form Skeletal Myotubes and Their Applications. Tissue Eng. Part B Rev. 2014; 1-129.
  137. Rangarajan S., Madden L., Bursac N. Use of flow, electrical, and mechanical stimulation to promote engineering of striated muscles. Ann. Biomed. Eng. 2014; 42(7): 1391-405.
  138. Coletti D., Teodori L., Albertini M.C. et al. Static magnetic fields enhance skeletal muscle differentiation in vitro by improving myoblast alignment. Cytometry Part A 2007; 71(10), 846-856.
  139. Marg A., Schoewel V., Timmel T. et al. Sarcolemmal repair is a slow process and includes EHD2. Traffic 2012; 13(9): 1286-94.
  140. Gawlitta D., Li W., Oomens C.W.J. et al. The relative contributions of compression and hypoxia to development of muscle tissue damage: an in vitro study. Ann. Biomed. Eng. 2007; 35(2): 273-84.
  141. Joshi D., Patel H., Baker D.M. et al. Development of an in vitro model of myotube ischemia. Lab. Investig. 2011; 91(8): 1241-52.
  142. Robin J.D., Wright W.E., Zou Y. et al. Isolation and immortalization of patient-derived cell lines from muscle biopsy for disease modeling. J. Vis. Exp. 2015; (95): 52307
  143. Marx U., Walles H., Hoffmann S. et al. 'Human-on-a-chip' developments: a translational cutting-edge alternative to systemic safety assessment and efficiency evaluation of substances in laboratory animals and man? Altern. Lab. Anim. 2012; 40(5): 235-57.
  144. Marx U. Organotypic tissue culture for substance testing. J. Biotechnol. 2010; 148(1): 1-2.
  145. Giese C., Marx U. Human immunity in vitro - solving immunogenicity and more. Adv. Drug. Deliv. Rev. 2014; 69-70: 103-22.
  146. Materne E.M., Maschmeyer I., Lorenz A.K. et al. The multiorgan chip-a microfluidic platform for long-term multi-tissue coculture. J. Vis. Exp. 2015; (98): e52526.
  147. Gordon S., Daneshian M., Bouwstra J. et al. Non-animal models of epithelial barriers (skin, intestine and lung) in research, industrial applications and regulatory toxicology. ALTEX. 2015; 32(4): 327-78
  148. Wagner I., Materne E.M., Brincker S. et al. A dynamic multiorgan-chip for long-term cultivation and substance testing proven by 3D human liver and skin tissue co-culture. Lab. Chip. 2013; 13(18): 3538-47
  149. Maschmeyer I., Lorenz A.K., Schimek K. et al. A four-organchip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab. Chip. 2015; 15(12): 2688-99.

Copyright (c) 2015 PJSC Human Stem Cells Institute

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС 77 - 57156 от 11.03.2014.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies