Current methods in experimental angiogenesis investigation

Cite item


Growing interest in angiogenesis, a key component in the development of different diseases, requires the use of a suitable experimental model to simulate neovascularization in a laboratory. In recent years, with the development of novel therapeutic strategies, based on angiogenesis regulation, this problem has become especially important. Current in vitro and in vivo models are characterized with a variety of disadvantages, which impede results interpretation. Thus, in vitro assays provide estimation of discrete endothelial cells characteristics, which alter from the same ones in the native microenvironment. The use of in vivo assays is accompanied with difficulties in testing agent delivery and quantitative analysis of its angiogenic activity In view of these complications, the use of a combination of assays is recommended while planning the experiment in this area. The aim of this review is to critically analyze angiogenesis assays, currently used to perform fundamental investigation as well as preclinical tests of developing therapeutic agents

Full Text

Restricted Access

About the authors

A. A Livanova

S.M. Kirov Medical Military Academy


R. V Deev

Human Stem Cells Institute; Kazan (Volga region) Federal University

A. A Rizvanov

Kazan (Volga region) Federal University


  1. Carmeliet P., Jain R. K. Molecular mechanisms and clinical applications of angiogenesis. Nature 2011; 473(7347): 298-307.
  2. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat. Med. 2000; 6(4): 389-95.
  3. Jain R. K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 2005; 307(5706): 58-62.
  4. Куприянов В. В., Миронов В.А., Миронов А.А. и др. Ангиогенез. М. : Квартет; 1993.
  5. Staton C.A. , Reed M.W., Brown N.J. A critical analysis of current in vitro and in vivo angiogenesis assays. Int. J. Exp. Pathol. 2009; 90(3): 195-221.
  6. Шевченко Н.А. Эмбриональный гистогенез эндотелия. Архив анатомии 1981; 81(2): 5-18.
  7. Eccles S.A., Court W. , Patterson L. et al. In vitro assays for cell functions related to angiogenesis: Proliferation, motility, tubular differentiation and proteolysis. In: Marim S., Murray C., editors. Angiogenesis Protocols. 2nd ed. Nottingham: Humana Press; 2009. p. 159-82.
  8. Jaffe E.A., Nachman R. L., Becker C. G. et al. Culture of human endothelial cells derived from umbilical veins, identification by morphologic and immunologic criteria. J. Clin. Invest. 1973; 52: 2745-56.
  9. Staton C.A., Stribbling S. M., Tazzyman S. et al. Current methods for assaying angiogenesis in vitro and in vivo. Int. J. Exp. Pathol. 2004; 85(5): 233-48.
  10. Салафутдинов И. И., Шафигуллина А. К., Ялвач M. Э. и др. Эффект одновременной экспрессии различных изоформ фактора роста эндотелия сосудов VEGF и основного фактора роста фибробластов FGF2 на пролиферацию эндотелиальных клеток пупочной вены человека HUVEC. Клеточная трансплантология и тканевая инженерия 2010; V(2): 62-7.
  11. Bouïs D., Hospers G.A., Meijer C. et al. Endothelium in vitro: a review of human vascular endothelial cell lines for blood vessel-related research. Angiogenesis 2001; 4(2): 91-102.
  12. Benndorf R., Boger R. H. , Ergun S. et al. Angiotensin II type 2 receptor inhibits vascular endothelial growth factor-induced migration and in vitro tube formation of human endothelial cells. Circ. Res. 2003; 93: 438-47
  13. Ma X., Wehland M., Schulz H. et al. Genomic approach to identify factors that drive the formation of three-dimensional structures by EA. hy926e endothelial cells. PLOS One 2013; 8(5): e64402
  14. Salahuddin S.Z. , Nakamura S., Biberfeld P. et al. Angiogenic properties of Kaposi's sarcoma-derived cells after long-term culture in vitro. Science 1988; 242: 430-3.
  15. Muruganandam A. , Herx L. M., Monette R. et al. Development of immortalized human cerebromicrovascular endothelial cell line as an in vitro model of the human blood-brain barrier. FASEB J. 1997; 11(13): 1187-97.
  16. Michael A., Gimbrone J., Fareed G. C. Transformation of cultured human vascular endothelium by SV40 DNA. Cell 1976; 9(2): 685-93
  17. Ide H., Minamishima Y., Eizuru Y. et al. 'Transformation' of human endothelial cells by SV40 virions. Microbiol. Immunol. 1988; 32(1): 45-55.
  18. Iijima S. , Ishida M., Nakajima-Iijima S. Immortalization of human endothelial cells by origin-defective simian virus 40 DNA. Agric. Biol. Chem. 1991; 55(11): 2847-53.
  19. Fickling S.A., Tooze J.A., Whitley G. S. J. Characterization of human umbilical vein cell lines produced by transfection with the early region of SV40. Exp. Cell Res. 1992; 201: 517-21.
  20. Hohenwarter O., Zinser E., Schmatz C. et al. Influence of transfected SV40 early region on growth and differentiation of human endothelial cells. J. Biotechnol. 1992; 25: 349-56.
  21. Hohenwarter O. , Schmatz C., Katinger H. Stability of von Willebrand factor secretion in divergent human endothelial hybrid cell lines. Cytotechnology 1992; 8: 31-7.
  22. Lassalle P. , LaGrou C., Delneste Y. et al. Human endothelial cells transfected by SV 40 T antigens: Characterization and potential use as a source of normal endothelial factors. Eur. J. Immunol. 1992; 22: 425-31
  23. Hohenwarter O., Jakoubek A., Schmatz C. et al. Expression of SV40 tumor antigens enables human endothelial cells to grow independently from fetal calf serum end exogenous growth factors. J. Biotechnol. 1994; 34: 205-11.
  24. Schütz M., Teifel M., Friedl P. Establishment of a human placental endothelial cell line with extended life span after transfection with SV 40 T-antigens. Eur. J. Cell Biol. 1997; 74(4): 315-20.
  25. Werner S. , Hofschneider P. H., Stürzl M. et al. Cytochemical and molecular properties of simian virus 40 transformed Kaposi's sarcoma-derived cells: Evidence for the secretion of a member of the fibroblast growth factor family. J. Cell Physiol. 1989; 141: 490-502
  26. Corbeil J., Evans L. A. , Vasak E. et al. Culture and properties of cells derived from Kaposi sarcoma. J. Immunol. 1991; 146(9): 2972-76
  27. Edgell C.J. S., McDonald C. C. , Graham J. B. Permanent cell line expressing human factor VIII-related antigen established by hybridization. PNAS USA 1983; 80: 3734-7.
  28. Faller D.V., Kourembanas S., Ginsberg D. et al. Immortalization of human endothelial cells by murine sarcoma viruses, without morphologic transformation. J. Cell Physiol. 1988; 134: 47-56.
  29. Schwartz B., Vicart P., Delouis C. et al. Mammalian cell lines can be efficiently established in vitro upon expression of the SV40 large T antigen driven by a promotor sequence derived from the human vimentin gene. Biol. Cell 1991; 73: 7-14.
  30. Sasaguri Y., Yanagi H., Nagase H. et al. Collagenase production by immortalized human aortic endothelial cells infected with simian virus 40. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 1991; 60(2): 91-7.
  31. Cockerill G.W., Meyer G., Noack L. et al. Characterization of a spontaneously transformed human endothelial cell line. Lab. Invest. 1994; 71(4): 497-509.
  32. Fontijn R., Hop C., Brinkman H. J. Maintenance of vascular endothelial cell-specific properties after immortalization with an amphotrophic replication-deficient retrovirus containing human papilloma virus 16 e5/e7 DNA. Exp. Cell Res. 1995; 216: 199-207.
  33. Moldovan F., Soliman H. R., Bennani H. et al. Functional properties of a new line of immortalized human endothelial cells. C. R. Acad. Sci. III 1995; 318: 951-8.
  34. Le Tonquèze M., Jamin C., Böhme M. et al. Establishment and characterization of permanent human endothelial cell clones. Lupus 1996; 5: 103-12.
  35. Leeuwen van E. B., Veenstra R. , Wijk van R. et al. Characterization of immortalized human umbilical and iliac vein endothelial cell lines after transfection with SV40 large T-antigen. Blood Coagul. Fibrinolysis 2000; 11(1): 15-25.
  36. Yang J., Chang E., Cherry A. M. Human endothelial cell life extension by telomerase expression. J. Biol. Chem. 1999; 274(37): 26141-8.
  37. Ades E.W., Candal F. J., Swerlick R.A. et al. HMEC-1: Establishment of an immortalized human microvascular endothelial cell line. J. Invest. Dermatol. 1992; 99: 683-90.
  38. Hering S., Grin B. E., Strauss M. Immortalization of human fetal sinusoidal liver cells by polyoma virus large T antigen. Exp. Cell Res. 1991; 195: 1-7.
  39. Candal F. J. , Rafii S., Parker J. T. BMEC-1: A human bone marrow microvascular endothelial cell line with primary cell characteristics. Microvascr. Res. 1996; 52: 221-34.
  40. Schweitzer K. M. , Vicart P. , Delouis C. Characterization of a newly established human bone marrow endothelial cell line: Distinct adhesive properties for hematopoietic progenitors compared with human umbilical vein endothelial cells. Lab. Invest. 1997; 76(1): 25-36
  41. Lehr J. E., Pienta K. J. Preferential adhesion of prostate cancer cells to a human bone marrow endothelial cell line. J. Natl. Cancer Inst. 1998; 90(2): 118-23.
  42. Heffelfinger S. C., Hawkins H. H., Barrish J. SK HEP-1: A human cell line of endothelial origin. In Vitro Cell Dev. Biol. 1992; 28A: 136-42.
  43. Hoover M. L., Vevica V., Hopauir J. M. et al. Human endothelial cell line from an angiosarcoma. In Vitro Cell Dev. Biol. 1993; 29A: 199-202.
  44. Бенюмович М. С. Cчетная камера с сетками Горяева. Патент РФ на изобр. №212630. 20 февраля 1999.
  45. Denizot F., Lang R. Rapid colormetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods 1986; 89: 271-7
  46. Wemme H., Pfeifer S. , Heck R. et al. Measurement of lymphocyte proliferation: critical analysis of radioactive and photometric methods. Immunobiology 1992; 185: 78-89.
  47. Wilson G. D. Measurement of cell kinetics in human tumours in vivo using bromodeoxyuridine incorporation and flow cytometry. Br. J. Cancer 1988; 58(4): 423-31.
  48. Lyons A. B. Analyzing cell division in vivo and in vitro using flow cytometric measurement of CFSE dye dilution. J. Immunol. Method 2000; 243(12): 147-54.
  49. Lyons A. B., Parish. C. R. Determination of lymphocyte division by flow cytometry. J. Immunol. Methods 1994; 171: 131-213.
  50. Neckers L. M., Funkhouser W. K. , Trepel J. B. et al. Significant non-s-phase DNA synthesis visualized by flow cytometry in activated and in malignant human lymphoid cells. Exp. Cell Res. 1995; 156: 429-38
  51. Bullwinkel J., Baron-Lühr B. , Lüdemann A. et al. Ki-67 protein is associated with ribosomal RNA transcription in quiescent and proliferating cells. J. Cell Physiol. 2006; 206(3): 624-35.
  52. Gomez D., Reich N. C. Stimulation of primary human endothelial cell proliferation by IFN. J. Immunol. 2003; 170: 5373-81.
  53. Schor A. M. , Ellis I. , Schor S. L. Chemotaxis and chemokinesis in 3D macromolecular matrices. Methods Mol. Med. 2001; 46: 163-83.
  54. Boyden S. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J. Exp. Med. 1962; 115: 453-66
  55. Alessandri G., Raju F., Gullino P. M. Mobilization of capillary endothelium in vitro induced by effectors of angiogenesis in vivo. Cancer Res. 1983; 43: 1790-7.
  56. Smith J. T., Tomfohr J. K., Wells M. C. Measurement of cell migration on surface-bound fibronectin gradients. Langmuir 2004; 20: 8279-86
  57. Albini A., Benelli R., Noonan D. M. et al. The ''chemoinvasion assay'': a tool to study tumor and endothelial cell invasion of basement membranes. Int. J. Dev. Biol. 2004; 48: 563-71.
  58. Wong M. K., Gotlieb A. I. In vitro re-endothelialization of a single-cell wound. Role of microfilament bundles in rapid lamellipodia-mediated wound closure. Lab. Invest. 1984; 51: 75-81.
  59. Pepper M. S., Belin D., Montesano R. et al. Transforming growth factor-beta 1 modulates basic fibroblast growth factor-induced proteolytic and angiogenic properties of endothelial cells in vitro. J. Cell Biol. 1990; 111: 743-55.
  60. Lampugnani M. G. Cell migration into a wounded area in vitro. Methods Mol. Biol. 1999; 96: 177-82.
  61. Auerbach R., Auerbach W., Polakowski I. Assays for angiogenesis: a review. Pharmacol. Ther. 1991; 51: 1-11.
  62. Cai G., Lian J. , Shapiro S. S. et al. Evaluation of endothelial cell migration with a novel in vitro assay system. Methods Cell Sci. 2000; 22: 107-14.
  63. Folkman J., Haudenschild C. Angiogenesis in vitro. Nature 1980; 288(5791): 551-6.
  64. Auerbach R., Lewis R., Shinners B. Angiogenesis assays: a critical overview. Clin. Chem. 2003; 49: 32-40.
  65. Lawley T. J., Kubota Y. Induction of morphologic differentiation of endothelial cells in culture. J. Invest. Dermatol. 1989; 93: 59-61.
  66. Kanzawa S., Endo H., Shioya N. Improved in vitro angiogenesis model by collagen density reduction and the use of type III collagen. Ann. Plast. Surg. 1993; 30: 244-51.
  67. Madri J.A., Williams S. K. Capillary endothelial cell cultures: phenotypic modulation by matrix components. J. Cell Biol. 1983; 97: 153-65.
  68. Peters E. B., Christoforou N., Leong K.W. et al. Comparison of mixed and lamellar coculture spatial arrangements for tissue engineering capillary networks in vitro. Tissue Eng. Part A 2013; 19(5-6): 697-706.
  69. Rizvanov A.A., Yalvaç M. E., Shafigullina A. K. et al. Interaction and self-organization of human mesenchymal stem cells and neuroblastoma SH-SY5Y cells under co-culture conditions: a novel system for modeling cancer cell micro-environment. Eur. J. Pharm. Biopharm. 2010; 76(2): 253-9.
  70. Hirschi K. K., Rohovsky S.A., D'Amore P.A. PDGF, TGF-beta, and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J. Cell Biol. 1998; 141(3): 805-14.
  71. Korff T. , Kimmina S. , Martiny-Baron G. et al. Blood vessel maturation in a 3-dimensional spheroidal coculture model: direct contact with smooth muscle cells regulates endothelial cell quiescence and abrogates VEGF responsiveness. FASEB J. 2001; 15(2): 447-57.
  72. Darland D. C., Massingham L. J., Smith S. R. Pericyte production of cell-associated VEGF is differentiation-dependent and is associated with endothelial survival. Dev. Biol. 2003; 264(1): 275-88.
  73. Nicosia R. F., Lin Y. J. , Hazelton D. et al. Endogenous regulation of angiogenesis in the rat aorta model. Role of vascular endothelial growth factor. Am. J. Pathol. 1997; 151: 1379-86.
  74. Muthukkaruppan V. R., Shinners B. L., Lewis R. et al. The chick embryo aortic arch assay: a new, rapid, quantifiable in vitro method for testing the efficacy of angiogenic and anti-angiogenic factors in a three-dimensional, serum-free organ culture system Proc Am Assoc. Cancer Res. 2000; 41: 65.
  75. Murphy J. B. Transplantability of tissues to the embryo of foreign species. Its bearing on questions of tissue specificity and tumor immunity. J. Exp. Med. 1913; 17: 482-93.
  76. Ausprunk D. H., Knighton D. R., Folkman J. Vascularization of normal and neoplastic tissues grafted to the chick chorioallantois Role of host and preexisting graft blood vessels Am J Pathol 1975; 79(3): 597-618.
  77. Weiss J. B. , Elstow S. F. , Hill C. R. et al. Low molecular weight angiogenesis factor: a growth factor not unique to tumours which activates procollagenase. Prog. Appl. Microcirc. 1984; 4: 76-87
  78. Zijlstra A., Seandel M., Kupriyanova T.A. et al. Proangiogenic role of neutrophil-like inflammatory heterophils during neovascularization induced by growth factors and human tumor cells Blood 2006; 107: 317-27.
  79. Arnold J. Experimentelle Untersuchungen ueber die Blutkapillaren Virchows Arch Pathol Anat 1872; 53: 70-92
  80. Shan S., Dewhirst M. W. Corneal angiogenesis assay. In: Staton C.A., Lewis C., Bicknell R., editors. Angiogenesis Assays: A Critical Appraisal of Current Techniques. New York: John Wiley & Sons; 2006 p 203-222
  81. Ziche M. , Morbidelli L. The corneal pocket assay. Methods Mol. Biol. 2015; 1214: 15-28.
  82. Falkvoll K. H. A method to quantify neovascularization in the mouse cornea. Ophthalmic Res. 1991; 23(2): 104-14.
  83. Tobia C., Gariano G., De Sena G. et al. Zebrafish embryo as a tool to study tumor/endothelial cell cross-talk. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 2013; 1832(9): 1371-7.
  84. Isogai S., Horiguchi M., Weinstein B. M. The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development. Dev. Biol. 2001; 230: 278-301.
  85. Lawson N. D. , Weinstein B. M. Arteries and veins: making a difference with zebrafish. Nat. Rev. Genet. 2002; 3: 674-82.
  86. Currie P. D. , Ingham P. W. Induction of a specific muscle cell type by a hedgehog-like protein in zebrafish Nature 1996; 382: 452-5
  87. Serbedzija G. N. , Flynn E. , Willett C. E. Zebrafish angiogenesis: a new model for drug screening. Angiogenesis 1999; 3t4): 353-9.
  88. Weinstein B. M. , Stemple D. L. , Driever W. et al. Gridlock, a localized heritable vascular patterning defect in the zebrafish Nat Med. 1995; 1: 1143-7.
  89. Chico T.J., Ingham P.W., Crossman D. C. Modeling cardiovascular disease in the zebrafish Trends Cardiovasc Med 2008; 18, 150-5.
  90. Motoike T. , Loughna S. , Perens E. et al. Universal GFP reporter for the study of vascular development Genesis 2000; 28: 75-81
  91. Cross L. M. , Cook M. A. , Lin S. et al. Rapid analysis of angiogenesis drugs in a live fluorescent zebrafish assay Arterioscler Thromb. Vasc. Biol. 2003; 23: 911-22.
  92. Gray C., Packham I. M., Wurmser F. et al. Ischemia is not required for arteriogenesis in zebrafish embryos Arterioscler Thromb Vasc. Biol. 2007; 27: 2135-41.
  93. Haldi M. , Ton C. , Seng W. L. et al. Human melanoma cells transplanted into zebrafish proliferate, migrate, produce melanin, form masses and stimulate angiogenesis in zebrafish Angiogenesis 2006; 9: 136-51.
  94. Stoletov K. , Montel V. , Lester R. D. High resolution imaging of the dynamic tumour cellvascular interface in transparent zebrafish PNAS USA 2007; 104: 17406-11.
  95. Grindlay J. H., Waugh J. M. Plastic sponge which acts as a framework for living tissue; experimental studies and preliminary report of use to reinforce abdominal aneurysms experimental studies and preliminary report of use to reinforce abdominal aneurysms AMA Arch. Surg. 1951; 63: 288-97.
  96. Woessner J. F. , Boucek R. J. Enzyme activities of rat connective tissue obtained from subcutaneously implanted polyvinyl sponge J Biol Chem 1959; 234: 3296-300
  97. Edwards R. H. , Sarmenta S. S. , Hass G. M. Stimulation of granulation tissue growth by tissue extracts; study by intramuscular wounds in rabbits. Arch. Pathol. 1960; 69: 286-302.
  98. Schilling J.A., Joel W., Shurley H. M. Wound healing: a comparative study of the histochemical changes in granulation tissue contained stainless steel wire mesh and polyvinyl cylinders Surgery 1959; 46: 702-10.
  99. Andrade S. P. , Ferreira M. A. The sponge implant model of angiogenesis. Methods Mol. Biol. 2009; 467: 295-304.
  100. Kleinman H. K., Graf J. et al. Role of basement membranes in cell differentiation. Ann. N. Y. Acad. Sci. 1987; 513: 134-45.
  101. Passaniti A., Taylor R. M., Pili R. et al. A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin and fibroblast growth factor. Lab. Invest. 1992; 67: 519-28.
  102. Kleinman H. K., McGarvy M. L. , Liotta L.A. et al. Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry 1982; 24: 6188-93.
  103. Edwards R. H., Sarmenta S. S., Hass G. M. Stimulation of granulation tissue growth by tissue extracts; study by intramuscular wounds in rabbits. Arch. Path. 1960; 69: 286-302.
  104. Paulini K. , Korner B., Beneke G. et al. A quantitative study of the growth of connective tissue: investigations on polyesterpolyurethane sponges Connect Tissue Res 1974; 2: 257-64
  105. Davidson J. M., Klagsbrun M. , Hill K. E. et al. Accelerated wound repair, cell proliferation and collagen accumulation are produced by a cartilage-derived growth factor J Cell Biol 1985; 100: 1219-27.
  106. Holund B., Junker P., Garbarsch C. et al. Formation of granulation tissue in subcutaneously implanted sponges in rats Acta Pathol. Microbiol. Scand. 1979; 87: 367-74.
  107. Belo A. V., Barcelos L. S., Teixeira M. M. et al. Differential effects of antiangiogenic compounds in neovascularization, leukocyte recruitment, VEGF production, and tumour growth in mice Cancer Invest. 2004; 22: 723-9.
  108. Ferreira M.A., Barcelos L. S., Campos P. P. et al. Sponge-induced angiogenesis and inflammation in PAF receptor-deficient mice (PAFR-KO). Br. J. Pharmacol. 2004; 141: 1185-92.
  109. Ford-Hutchinson A.W., Walker J.A., Smith J. A. Assessment of anti-inflammatory activity by sponge implantation techniques J Pharmacol. Meth. 1977; 1: 3-7.
  110. Mahadevan V. , Hart I. R., Lewis G. P. Factors influencing blood supply in wound granuloma quantitated by a new in vivo technique Cancer Res. 1989: 49: 415-9.
  111. Lage A. P., Andrade S. P. Assessment of angiogenesis and tumor growth in conscious mice by a fluorimetric method Microvasc Res 2000; 59: 278-85
  112. Andrade S. P., Fan T. -P. D., Lewis G. P. Quantitative in vivo studies on angiogenesis in a rat sponge model. Br. J. Exp. Path. 1987; 68: 755-66
  113. Andrade S. P. , Ferreira M. A. The sponge implant model of angiogenesis Methods Mol Biol 2009; 467: 295-304
  114. Solowiej A. , Biswas P., Graesser D. et al. Lack of platelet endothelial cell adhesion molecule-1 attenuates foreign body inflammation because of decreased angiogenesis Am J Pathol 2003; 162: 953-62.
  115. Baker J. H. E. , Huxham L. A. , Kyle A. H. et al. Vascular-specific quantification in an in vivo Matrigel chamber angiogenesis assay Microvasc. Res. 2006; 71: 69-75.
  116. Folkman J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 1971; 285(21): 1182-6.
  117. Gou M. L. , Men K. , Shi H. et al. Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo Nanoscale 2011; 3(4): 1558-67.
  118. Stribbling S. M., Friedlos F. , Martin J. et al. Regressions of established breast carcinoma xenografts by carboxypeptidase G2 suicide gene therapy and the produrg CMDA are due to a bystander effect Hum Gene Ther 2000; 11: 285-92
  119. Brown N. J. , Staton C. A. , Rodgers G. R. et al. Fibrinogen E fragment selectively disrupts the vasculature and inhibits the growth of tumours in a syngeneic murine model Br J Cancer 2002; 86: 1813-6.
  120. Bruns C. J., Harbison M. T., Davis D.W. et al. Epidermal growth factor receptor blockade with C225 plus gemcitabine results in regression of human pancreatic carcinoma growing orthotopically in nude mice by antiangiogenic mechanisms Clin Cancer Res 2000; 6(5): 1936-48.
  121. Jung Y. D., Ahmad S.A., Liu W. et al. The role of the microenvironment and intercellular cross-talk in tumour angiogenesis Semin. Cancer Biol. 2002; 12: 105-12.
  122. Cross N.A., Fowles A., Reeves K. et al. Imaging the effects of castration on bone turnover and hormone dependent prostate cancer colonization of bone. Prostate 2008; 68: 1707-14.
  123. Van Haperen R., Cheng C., Mees B. M. E. et al. Functional expression of endothelial nitric oxide synthase fused to green fluorescent protein in transgenic mice Am J Pathol 2003; 163: 1677-86.
  124. Hillen F. , Kaijzel E. L. , Castermans K. et al. A transgenic Tie2-GFP athymic mouse model; a tool for vascular biology in xenograft tumours Biochem Biophys Res Commun 2008; 368: 364-7
  125. Cheng C., van Haperen R. , de Waard M. et al. Shear stress affects the intracellular distribution of eNOS: direct demonstration by a novel in vivo technique. Blood 2005; 106: 3691-8.
  126. Martin V., Liu D., Fueyo J., Gomez-Manzano C. Tie2: a journey from normal angiogenesis to cancer and beyond. Histol. Histopathol. 2008; 23: 773-80
  127. Okabe M., Ikawa M., Kominami K. et al. 'Green mice' as a source of ubiquitous green cells. FEBS Lett. 1997; 407: 313-9.
  128. Yang M., Reynoso J., Jiang P. et al. Transgenic nude mouse with ubiquitous green fluorescent protein expression as a host for human tumors. Cancer Res. 2004; 64: 8651-6.
  129. Yang M. , Li L., Jiang P. et al. Dual-color fluorescence imaging distinguishes tumor cells from induced host angiogenic vessels and stromal cells. PNAS USA 2003; 100: 14259-62.
  130. Hanahan D., Christofori G., Naik P. et al. Transgenic mouse models of tumour angiogenesis: the angiogenic switch, its molecular controls, and prospects for preclinical therapeutic models. Eur. J. Cancer 1996; 32A: 2386-93.
  131. Akerblom B., Zang G., Zhuang Z.W. Heterogenity among RIP-Tag insulinomas allow vascular endothelial growth factor A independent tumor expansion as revealed by studies in Shb mutant mice: implications fortumor angiogenesis. Mol. Oncol. 2012; 6(3): 333-46.
  132. Staton C.A., Reed M.W., Brown N. J. A critical analysis of current in vitro and in vivo angiogenesis assays. Int. J. Exp. Pathol. 2009; 90(3): 195-221.
  133. Staton C.A., Stribbling S. M., Garcia-Echeverria C. et al. Identification of key residues involved in mediating the in vivo antitumour/anti-endothelial activity of Alphastatin. J. Thromb. Haemost. 2007; 5: 846-54
  134. Inoue K., Chikazawa M. , Fukata S. Docetaxel enhances the therapeutic effect of the angiogenesis inhibitor TNP-470 (AGM-1470) in metastatic human transitional cell carcinoma. Clin. Cancer Res. 2003; 9: 886-99

Copyright (c) 2015 PJSC Human Stem Cells Institute

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС 77 - 57156 от 11.03.2014.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies